
http://wrap.warwick.ac.uk

Original citation:
Gkotsis, George, Stepanyan, Karen, Cristea, Alexandra I. and Joy, Mike (2013) Self-
supervised automated wrapper generation for weblog data extraction. In: Gottlob, Georg
and Grasso , Giovanni and Olteanu , Dan and Schallhart, Christian , (eds.) Big Data :
29th British National Conference on Databases, BNCOD 2013, Oxford, UK, July 8-10,
2013. Proceedings. Lecture Notes in Computer Science , Volume 7968 . Springer Berlin
Heidelberg, pp. 292-302. ISBN 9783642394669

Permanent WRAP url:
http://wrap.warwick.ac.uk/59173

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Copyright statement:
“The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-
642-39467-6_26 ”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/19553631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/59173
http://link.springer.com/chapter/10.1007%2F978-3-642-39467-6_26
http://link.springer.com/chapter/10.1007%2F978-3-642-39467-6_26
mailto:publications@warwick.ac.uk

Self-supervised automated wrapper generation
for weblog data extraction

George Gkotsis, Karen Stepanyan, Alexandra I. Cristea, and Mike Joy

Department of Computer Science
University of Warwick

Coventry CV4 7AL
United Kingdom

{G.Gkotsis,K.Stepanyan,A.I.Cristea,M.S.Joy}@warwick.ac.uk

Abstract. Data extraction from the web is notoriously hard. Of the
types of resources available on the web, weblogs are becoming increas-
ingly important due to the continued growth of the blogosphere, but re-
main poorly explored. Past approaches to data extraction from weblogs
have often involved manual intervention and suffer from low scalability.
This paper proposes a fully automated information extraction method-
ology based on the use of web feeds and processing of HTML. The ap-
proach includes a model for generating a wrapper that exploits web feeds
for deriving a set of extraction rules automatically. Instead of perform-
ing a pairwise comparison between posts, the model matches the values
of the web feeds against their corresponding HTML elements retrieved
from multiple weblog posts. It adopts a probabilistic approach for deriv-
ing a set of rules and automating the process of wrapper generation. An
evaluation of the model is conducted on a dataset of 2,393 posts and the
results (92% accuracy) show that the proposed technique enables robust
extraction of weblog properties and can be applied across the blogosphere
for applications such as improved information retrieval and more robust
web preservation initiatives.

Keywords: Web Information Extraction, Automatic Wrapper Induc-
tion, Weblogs

1 Introduction

The problem of web information extraction dates back to the early days of the
web and is fascinating and genuinely hard. The web, and the blogosphere as
a constituent part, correspond to a massive, publicly accessible unstructured
data source. Although exact numbers of weblogs are not known, it is evident
that the size of the blogosphere is large. In 2008 alone the Internet company
Technorati reported to be tracking more than 112 million weblogs, with around
900 thousand blog posts added every 24 hours1. In Britain alone, 25% of Internet

1 http://technorati.com/blogging/article/state-of-the-blogosphere-introdu
ction/

2 George Gkotsis, Karen Stepanyan, Alexandra I. Cristea, Mike Joy

users maintain weblogs or personal websites [5] that are read by estimated 77%
of Web users. Hence, the volume of information published on weblogs justifies
the attention of information retrieval, preservation and socio-historical research
communities.

The scale is not the only challenge for capturing weblog resources. The het-
erogeneous nature of these resources, the large numbers of third party elements
and advertisements, the rapid changes, the propagation of user-generated content
and the diversity of inter-relations across the resources are among the common
characteristics of the blogosphere. These characteristics amplify the complexity
of capturing, processing and transforming these web resources into structured
data. The successful extraction of weblog properties is of paramount importance
for improving the quality of numerous applications, such as analytics, informa-
tion retrieval and preservation.

Typically, the content of a weblog resides in a relational database. The au-
tomation supported by the blogging platform provides a common structure that
can be observed across the various weblog pages. More specifically, the weblog
post, which constitutes a building block of a weblog, comprises a set of proper-
ties, such as the title, author, publication date, post content and the categories
(or tags) assigned. Whilst the data structure is presented in a consistent way
across a certain weblog, it rarely appears identical across different weblogs, even
if the blogging platform remains the same. The main reason for the above in-
consistency is the fact that bloggers personalise the presentation of their weblog
arbitrarily, hence the resulting weblog exhibits a unique appearance. Moreover,
current techniques are not sufficient to meet the requirements of a weblog data
extraction framework which is a)fully automated, b)high granularity and c)high
quality.

One of the most prominent characteristics of weblogs is the existence of web
feeds. Web feeds, commonly provided as RSS, are machine interpretable, struc-
tured XML documents that allow access to (part of) the content of a website,
such as a weblog. In fact, this high quality, rigorous information contained in web
feeds has already been exploited in several applications (e.g. [13]). The solution
proposed here is influenced by the above idea of exploiting the web feeds and
attempts to overcome the limitation of fixed number of provided post-entities.
Intuitively, our approach is not to treat the web feeds as the only source of infor-
mation, but as a means that allows the self-supervised training and generation
of a wrapper automatically. During this self-supervised training session2, the
matching of the elements found between the web feeds and the weblog posts is
used to observe and record the position of the cross-matched elements. Based on
these observations, a set of rules is generated through an essentially probabilistic
approach. These rules are later applied throughout each weblog post (regardless
of its existence in the web feed).

2 The term self-supervised is inspired by and used in a similar way by Yates et al. in
order to describe their classifier induction [17]. Contrary to our approach, where we
focus on data values, their approach concerns the extraction of relational information
found in texts without using web feeds.

Self-supervised automated wrapper generation for weblog data extraction 3

This research makes the following main contributions:
– We use web feeds for training and generating a wrapper. The generated

wrapper is described in simple rules that are induced by following a proba-
bilistic approach. We provide a simple algorithm that is noise-tolerant and
takes into account the information collected about the location of HTML
elements found during training.

– We make use of CSS Classes as an attribute that can supplement the more
traditional XPath manipulation approach used to describe extraction rules.

– To the best of our knowledge, we are the first to propose a self-supervised
methodology that can be applied on any weblog and features unprecedented
levels of granularity, automation and accuracy. We support all of the above
through evaluation.

The paper is structured as follows. Section 2 describes the proposed model
and the methodology applied to extract the desired weblog properties. Section 3
evaluates the model, while Section 4 discusses the contribution of the approach
and presents related work. Finally, Section 5 presents the conclusions.

2 Proposed Model

We adopt the definition of a wrapper proposed by Baumgartner et al. where “a
wrapper is a program that identifies the desired data on target pages, extracts
the data and transforms it into a structured format” [3]. As discussed above,
our model aims to generate a fully automated wrapper for each weblog. The
approach is divided into three steps as follows.

2.1 Step 1: Feed Processing and Capturing of Post Properties

The input for executing the first step of the proposed model involves the ac-
quisition of the desired blog’s feed content. Similarly to standard RSS readers,
the model focuses on the entries that point to the weblog posts. For each entry,
we search and store the attributes of title, author, date published, summary and
permalink as the post properties.

2.2 Step 2: Generation of Filters

The second step includes the generation of filters. The naming convention we
use for the concept of a filter is similar to the one introduced in [2], where it is
described as the building block of patterns, which in turn describes a generalised
tree path in the HTML parse tree. Thus, adding a filter to a pattern extends the
set of extracted targets, whereas imposing a condition on a filter restricts the set
of targets. The same concept is used by XWRAP [11] in order to describe the
so-called “declarative information extraction rules”. These rules are described in
XPath-like expressions and point to regions of the HTML document that contain
data records.

Following related work, we use the concept of a filter in order to identify
and describe specific data elements of an HTML weblog post. Unlike previous
work, where most of the tools deal with the absolute path only (for example
through partial tree alignment [18]), our filters comprise a tuple, which extends
existing approaches. Our approach overcomes irregularities appearing across ab-
solute path values by providing additional, alternate means of describing the

4 George Gkotsis, Karen Stepanyan, Alexandra I. Cristea, Mike Joy

HTML element (namely our tuple also includes CSS Classes and HTML IDs).
By conducting an initial visual survey on weblogs, we hypothesize that espe-
cially CSS Classes may be used to provide an alternate and accurate way to
induce extraction rules, a feature that remains unexploited in most (if not all)
approaches until now. Our evaluation results support the above hypothesis.

In our approach, the filter is described using three basic attributes, as follows.

– Absolute Path: We use a notation similar to XPath’s absolute path to refer
to the position of the HTML element. The Absolute Path is described as a
sequence of edges, where each edge is defined as the name of the element and
the positional information of the element (index)3. This sequence of edges
starts from the root of the document and ends with the element containing
the value we are interested in. For example, the value /html[0]/body[1] refers
to the body element of an HTML document, since this is the second child
(hence, body[1]) of the root HTML element (html[0]).

– CSS Classes: “CSS (Cascading Style Sheets) is a simple mechanism for
adding style (e.g., fonts, colours, spacing) to web documents”4, first intro-
duced in 1996. It allows the separation of document content from document
presentation through the definition of a set of rules.

– HTML ID: The ID attribute specifies a unique identifier for an HTML ele-
ment of a document. It is commonly used in cases where CSS code needs to
refer to one unique element (e.g. the title of a post) or run JavaScript.

Figure 1 shows the structure of a filter with an annotated example. When
pointing at a specific element, a set of HTML ID values and CSS Classes together
with a single-valued Absolute Path are used to describe and define the filter.
More specifically, when an element is identified, any HTML IDs or CSS Classes
applied on this element are added to the filter. Afterwards, an iterative selection
of the parent element continues, adding HTML IDs and CSS Classes to the
sets, as long as the value of the parent element contains nothing but the value
identified. For the example illustrated in Figure 1, the value for the ID attribute
is single-date, for the CSS Classes the value is date and the Absolute Path is
html[0]/body[1]/div[1]/div[1]/div[0]/div[0]/div[1].

2.3 Step 3: Induction of Rules and Blog Data Extraction

After the completion of Step 2, a collection of filters is generated for each prop-
erty. When applied to the weblog posts from which they were extracted, they
link back to the HTML element of the matched property. However, due to mul-
tiple occurrences of values during the text matching process of Step 2, there are
cases where a value is found in more than one HTML element. This results in
generating filters equal to the number of values found. Not all of the collected

3 The positional information of an HTML element is crucial in a HTML document.
This is one of the reasons that HTML DOM trees are viewed as labelled ordered
trees in the literature (e.g., [7]).

4 http://www.w3.org/Style/CSS/

Self-supervised automated wrapper generation for weblog data extraction 5

Fig. 1. The structure of a filter. An example is annotated for the case of an element
containing a date value.

filters are suitable for extracting the data out of a weblog; the collection contains
diverse and sometimes “blurred” information that needs further processing.

In the case of weblog data extraction, there is neither prior knowledge of
the location of the elements to be identified, nor a definite, automated way to
describe them. We propose a case-based reasoning mechanism that assesses the
information found in filters. The aim of this mechanism is to generate rules
through a learning by example methodology, i.e., a general rule is extracted
through the observation of a set of instances. In our case, the instances cor-
respond to the weblog posts that lead to the generation of the filters during
the previous step. The rules are defined in the language used to describe the
previously collected filters. Therefore, they describe how to extract the weblog
properties. Our approach deals with irregularities found in web documents (and
filters thereof) in an inherently probabilistic way.

During the step of the induction of rules, our aim is to account for each
attribute of each filter (Absolute Path, CSS Classes and HTML IDs), in order to
assess the usefuleness of each attribute value as a rule. Essentially, a rule is the
result of the transposition of a filter. This transposition can result in maximum
three rules. The rule is described by its type (one of the three different attribute
types of the filters), a value (the value of the corresponding filter’s attribute)
and a score, which is used to measure its expected accuracy. An important
consideration taken here is the fact that selecting a “best-match” filter (i.e. a
tuple of all three filter attributes) from the list of the filters or a combination of
values for each attribute (as a collection of “best-of” values for each attribute)
may result in the elimination of the desired element (for example, the HTML ID
might increment for each weblog post and is therefore unique for every instance).
The approach adopted here is based on the assumption that a single attribute
(either the Absolute Path, or the CSS Classes or the HTML IDs) should suffice
for describing the extraction rule. In the evaluation section, we give evidence
why using a single attribute meets this expectation.

To assess the rule that best describes the extraction process, a score is cal-
culated for each rule. The score aims at keeping track of the effectiveness of the

6 George Gkotsis, Karen Stepanyan, Alexandra I. Cristea, Mike Joy

Algorithm 1 Rule induction algorithm

Inputs:
Collection of training posts P , Collection of candidate rules R

Outputs:
Rule with the highest score

for all Rules r ∈ R do . Initialize all scores
r.score← 0

end for
Rule rs← new Rule()
rs.score← 0
for all Rules r ∈ R do

for all Posts p ∈ P do . Check if application r(p) of rule r, on post p succeeds
If r(p) =value-property of p then

r.score + +
end for
r.score← r.score

|P | . Normalize score values
If r.score > rs.score then . Check if this is the best rule so far

rs← r
end for
return rs

rule, when applied across different posts of the weblog. As seen in Algorithm 1,
an iteration takes place for each of the candidate rules, which in turn is applied
on each of the training posts. For each successful match, the score of the rule is
increased by one5. After all posts have been checked, the value is divided by the
number of training posts against which the rule was validated, in order to rep-
resent a more meaningful, normalised measurement (i.e. the higher the better: 1
means that rule is successful for all posts, 0 means that it failed for each of the
posts applied). The rule having the highest score – if any – is returned.

Figure 2 presents an overview of the approach described above. As already
discussed in detail, the proposed solution involves the execution of three steps.
The first step includes the task of reading and storing the weblog properties
found in the web feed. The second step includes training the wrapper through
the cross matching of information found in the web feed and the corresponding
HTML documents. This step leads to the generation of information, captured
through the filters, which describes where the weblog data properties reside. The
final step transforms the filters into rules and calculates the rule scores in order
to select a rule for each of the desired properties.

2.4 Property Matching

The proposed method relies on the identification of an HTML element against a
specific value. Text matching can be used for achieving the above identification.
Generally, text matching is not a trivial task and can be classified into various

5 A successful match between properties is a crucial issue in our approach and is
discussed in detail in Section 2.4.

Self-supervised automated wrapper generation for weblog data extraction 7

Fig. 2. Overview of the weblog data extraction approach.

string matching types. More specifically, text matching may be complete, partial,
absolute or approximate. The matching of the elements is treated differently for
different properties, which is another contribution of this paper (details have
been omitted due to space limitations). For the title we look for absolute and
complete matchings, for the content we use the Jaro-Winkler metric [15] which
returns high similarity values when comparing the summary (feed) against the
actual content (web page), for the date we use the Stanford NER suite for
spotting and parsing the values [6], and for the author we use partial and absolute
matching with some boilerplate text (i.e. “Written By” and “Posted By”).

3 Evaluation

We evaluated our model against a collection of 240 weblogs (2,393 posts) for the
title, author, content and publication date. For the same collection, we used the
Google Blogger and WordPress APIs (in the limits of free quota) in order to
get valid and full data (i.e. full post content) and followed the 10-fold validation
technique [16]. As seen in Table 1, the prediction accuracy is high (mean value
92%). For the case of the title, the accuracy is as high as 97.3% (65 misses).
For the case of the content, the accuracy is 95.9% (99 misses). Publication date
is 89.4% accurate (253 misses) and post author is 85.4% (264 misses). Table 1
summarizes the above results and presents the accuracy of Boilerpipe (77.4%) [8]
(Boilerpipe is presented in detail in Section 4). Concerning the extraction of the
title using Boilerpipe, the captured values are considered wrong, since the tool
extracts the title of the HTML document. For the case of the main content, our
model achieves 81.6% relative error reduction. Furthermore, the overall average
score for all rules is 0.89, which presumably indicates that the induction of the
selected rules is taking place at a high confidence level.

Title Content Publication Date Author

Proposed Model 97.3%(65) 95.9% (99) 89.4% (253) 85.4% (264)
Boilerpipe 0 77.4% (539) N/A N/A

Table 1. Results of the evaluation showing the percentage of successfully extracted
properties. Number of misses are in parenthesis.

8 George Gkotsis, Karen Stepanyan, Alexandra I. Cristea, Mike Joy

4 Discussion and Related Work

The concept of using web feeds for capturing data is not new. ArchivePress is
one of the weblog archiving projects that have developed solutions for harvesting
the content of weblog feeds [14]. The solution focuses solely on collecting the
structured content of weblog feeds that contain posts, comments and embedded
media. The solution provided by ArchivePress remains highly limited, due to
the fixed number of entries and partial content (i.e. post summary) found in
feeds. Another approach that attempts to exploit web feeds was developed by
Oita and Sellenart [13]. This approach is based on evaluating a web page and
matching it to the properties found in the corresponding web feed. The general
principle of cross-matching web feeds and pages constitutes the foundation of the
approach that we propose in this paper. However, because the approach by Oita
and Sellenart does not devise general extraction rules, it remains inapplicable for
capturing the data that are no longer available in the corresponding web feed.
Additionally, the performance of their approach for extracting distinct properties
such as title was reported as poor (no figures were provided in the paper).

To position our approach from a more general point of view (within the
domain of earlier conducted work on web information extraction), we classify it
according to the taxonomy of data extraction tools by Laender [10]. More specifi-
cally, our approach can be associated with the Wrapper Induction and Modelling-
Based approaches. Similarly to the wrapper induction tools, our approach gen-
erates extraction rules. However, unlike many wrapper induction tools, our ap-
proach is fully automated and does not rely on human-annotated examples.
Instead, it uses web feeds as a model that informs the process of generating ex-
traction rules and it therefore resembles the Modelling-Based approaches. Hence,
the approach presented in this paper can be positioned in relation to tools such
as WIEN [9], Stalker [12], RoadRunner [4] or NoDoSE [1].

WIEN is among the first tools aimed at automating the process of infor-
mation extraction from web resources. The term wrapper induction is, in fact,
coined by the authors [9] of the tool. However, as one of the earlier attempts,
the use of the tool is restricted to a specific structure of the page and the heuris-
tics of the presented data. Furthermore, it is not designed to work with nested
structure of web data. The limitation of working with hierarchical data has been
addressed by the Stalker tool [12]. However, the use of the Stalker tool requires
a supervised training data set that limits the degree of automation offered by
the system. An attempt to automate the process of wrapper induction was made
by Crescenzi et al. [4] and published along with the RoadRunner tool. The tool
analyses structurally pairs of similar resources and infers an unlabelled (i.e. no
property identified) schema for extracting the data. NoDoSE [1] represents a
different, modelling-based category of tools that requires an existing model that
defines the process of extraction. This is a semi-automatic approach due to the
necessary human input for developing models. However, additional tools, such
as a graphical user interface for marking resources, can be used for facilitating
human input. Hence, the review of the earlier work suggests that our approach,
as proposed in this paper, addresses a niche not served by the existing tools.

Self-supervised automated wrapper generation for weblog data extraction 9

Among the generic solutions there are other technologies that aim at identi-
fying the main section (e.g. article) of a web page. The open source Boilerpipe
system is state-of-the-art and one of the most prominent tools for analysing the
content of a web page [8]. Boilerpipe makes use of the structural features, such
as HTML tags or sequences of tags forming subtrees, and employs methods that
stem from quantitative linguistics. Using measures, such as average word length
and average sentence length, Boilerpipe analyses the content of each web page
segment and identifies the main section by selecting the candidate with the high-
est score. As reported by Oita and Sellenart [13], the use of Boilerpipe delivers
relatively good precision (62.5%), but not as high as our approach.

Lastly, it is necessary to discuss the limitations of the proposed model and
future work. First of all, a requirement for the adoption of the model is the exis-
tence and integrity of web feeds. While web feeds are prominent characteristics
of weblogs, some weblogs are not configured to publish their updates through
feeds. In this case, the proposed model would not be appropriate to extract any
data. Additionally, a technique used to deceive anti-spam services is to report
false information in web feeds. In this case, the proposed model will signal a low
score on the rules – if any – generated (in fact, this limitation may be further
considered for spam detection). Another limitation concerns the extraction of
the date property. The date is currently processed for the English language only,
which may pose problems when matching the date in weblogs written in different
languages. An improvement would be to identify the language of the document
(e.g. with Apache Tika) and style the date following the locale of the identified
language. Concerning future work, the approach can be altered and deployed in
a supervised manner as well. In that case, the manual labelling of HTML ele-
ments will allow running the information extraction model on websites without
the requirement for web feeds. Finally, another idea worth considering is to keep
feeds for labelling data and to develop more robust ways of generating XPath
expressions. We intend to explore the above opportunities in the future.

5 Conclusions

In this paper, we have presented a method for fully automated weblog wrapper
generation. The generated wrapper exhibits increased granularity, since it man-
ages to identify and extract several weblog properties, such as the title, author,
publication date and main content of the post. This is accomplished through the
induction of rules, which are selected following a probabilistic approach based
on their scoring. Devising these rules is based on the generation of filters. The
filters constitute a structure that, when applied to a web document, singles out
an HTML element. They are described in tuples, where each of its element-
attributes describes the HTML element in different forms (Absolute Path, CSS
Classes and HTML IDs). The overall approach is evaluated against a real-world
collection of weblogs and the results show that the wrappers generated are robust
and efficient in handling different types of weblogs.

6 Acknowledgments

This work was conducted as part of the BlogForever project funded by the Euro-
pean Commission Framework Programme 7 (FP7), grant agreement No.269963.

10 George Gkotsis, Karen Stepanyan, Alexandra I. Cristea, Mike Joy

References

1. B. Adelberg. NoDoSE–a tool for semi-automatically extracting structured and
semistructured data from text documents. SIGMOD Rec., 27(2):283–294, 1998.

2. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction
with Lixto. In Proceedings of the 27th International Conference on Very Large Data
Bases, pages 119–128, San Francisco, USA, 2001. Morgan Kaufmann Publishers.

3. R. Baumgartner, W. Gatterbauer, and G. Gottlob. Web data extraction system.
In Encyclopedia of Database Systems, pages 3465–3471. Springer, 2009.

4. V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards automatic data
extraction from large web sites. In Proceedings of the international conference on
Very Large Data Bases, pages 109–118, 2001.

5. W. Dutton and G. Blank. Next generation users: The internet in Britain. 2011.
6. J. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into

information extraction systems by gibbs sampling. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pages 363–370. As-
sociation for Computational Linguistics, 2005.

7. P. Geibel, O. Pustylnikov, A. Mehler, H. Gust, and K. Kühnberger. Classification
of documents based on the structure of their DOM trees. In Neural Information
Processing, pages 779–788. Springer, 2008.

8. C. Kohlschütter, P. Fankhauser, and W. Nejdl. Boilerplate detection using shallow
text features. In Proceedings of the third ACM international conference on Web
search and data mining, WSDM ’10, pages 441–450, New York, USA, 2010. ACM.

9. N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence, 118(1):15–68, 2000.

10. A. Laender, B. Ribeiro-Neto, A. Da Silva, and J. Teixeira. A brief survey of web
data extraction tools. ACM Sigmod Record, 31(2):84–93, 2002.

11. L. Liu, C. Pu, and W. Han. XWrap: An extensible wrapper construction system for
internet information. In Proceedings of the 16th International Conference on Data
Engineering (ICDE 2000), pages 611–621, San Diego, CA, March 2000. IEEE.

12. I. Muslea, S. Minton, and C. Knoblock. Hierarchical wrapper induction for
semistructured information sources. Autonomous Agents and Multi-Agent Systems,
4(1):93–114, 2001.

13. M. Oita and P. Senellart. Archiving data objects using Web feeds. In Proceedings
of International Web Archiving Workshop, pages 31–41, Vienna, Austria, 2010.

14. M. Pennock and R. Davis. ArchivePress: A Really Simple Solution to Archiving
Blog Content. In Sixth International Conference on Preservation of Digital Objects
(iPRES 2009), California Digital Library, San Francisco, USA, October 2009.

15. W. E. Winkler. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. Proceedings of the Section on Survey Re-
search Methods American Statistical Association, pages 354–359, 1990.

16. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition. Morgan Kaufmann, 2005.

17. A. Yates, M. Cafarella, M. Banko, O. Etzioni, M. Broadhead, and S. Soderland.
Textrunner: Open information extraction on the web. In Proceedings of Human
Language Technologies: The Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages 25–26, 2007.

18. Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In
Proceedings of the 14th international conference on World Wide Web, pages 76–
85. ACM, 2005.

