1,351 research outputs found

    Some Aspects of New CDM Models and CDM Detection Methods

    Full text link
    We briefly review some recent Cold Dark Matter (CDM) models. Our main focus are charge symmetric models of WIMPs which are not the standard SUSY LSP's (Lightest Supersymmetric Partners). We indicate which experiments are most sensitive to certain aspects of the models. In particular we discuss the manifestations of the new models in neutrino telescopes and other set-ups. We also discuss some direct detection experiments and comment on measuring the direction of recoil ions--which is correlated with the direction of the incoming WIMP. This could yield daily variations providing along with the annual modulation signatures for CDM.Comment: 14 page

    Discovery and Measurement of Sleptons, Binos, and Winos with a Z'

    Get PDF
    Extensions of the MSSM could significantly alter its phenomenology at the LHC. We study the case in which the MSSM is extended by an additional U(1) gauge symmetry, which is spontaneously broken at a few TeV. The production cross-section of sleptons is enhanced over that of the MSSM by the process pp→Z′→ℓ~ℓ~∗pp\to Z' \to \tilde{\ell} \tilde{\ell}^*, so the discovery potential for sleptons is greatly increased. The flavor and charge information in the resulting decay, ℓ~→ℓ+LSP\tilde{\ell} \to \ell + {LSP}, provides a useful handle on the identity of the LSP. With the help of the additional kinematical constraint of an on-shell Z', we implement a novel method to measure all of the superpartner masses involved in this channel. For certain final states with two invisible particles, one can construct kinematic observables bounded above by parent particle masses. We demonstrate how output from one such observable, m_T2, can become input to a second, increasing the number of measurements one can make with a single decay chain. The method presented here represents a new class of observables which could have a much wider range of applicability.Comment: 20 pages, 15 figures; v2 references added and minor change

    Systematic Improvement of Parton Showers with Effective Theory

    Full text link
    We carry out a systematic classification and computation of next-to-leading order kinematic power corrections to the fully differential cross section in the parton shower. To do this we devise a map between ingredients in a parton shower and operators in a traditional effective field theory framework using a chain of soft-collinear effective theories. Our approach overcomes several difficulties including avoiding double counting and distinguishing approximations that are coordinate choices from true power corrections. Branching corrections can be classified as hard-scattering, that occur near the top of the shower, and jet-structure, that can occur at any point inside it. Hard-scattering corrections include matrix elements with additional hard partons, as well as power suppressed contributions to the branching for the leading jet. Jet-structure corrections require simultaneous consideration of potential 1 -> 2 and 1 -> 3 branchings. The interference structure induced by collinear terms with subleading powers remains localized in the shower.Comment: 54 pages, 24 figures, plus a few appendices. v2: included a parameter "eta" to account for energy loss, title improved, journal versio

    The Phase Behavior of Mixed Lipid Membranes in Presence of the Rippled Phase

    Full text link
    We propose a model describing liquid-solid phase coexistence in mixed lipid membranes by including explicitly the occurrence of a rippled phase. For a single component membrane, we employ a previous model in which the membrane thickness is used as an order parameter. As function of temperature, this model properly accounts for the phase behavior of the three possible membrane phases: solid, liquid and the rippled phase. Our primary aim is to explore extensions of this model to binary lipid mixtures by considering the composition dependence of important model parameters. The obtained phase diagrams show various liquid, solid and rippled phase coexistence regions, and are in quantitative agreement with the experimental ones for some specific lipid mixtures.Comment: 8pages, 5figure

    Lepton Jets in (Supersymmetric) Electroweak Processes

    Get PDF
    We consider some of the recent proposals in which weak-scale dark matter is accompanied by a GeV scale dark sector that could produce spectacular lepton-rich events at the LHC. Since much of the collider phenomenology is only weakly model dependent it is possible to arrive at generic predictions for the discovery potential of future experimental searches. We concentrate on the production of dark states through Z0Z^0 bosons and electroweak-inos at the Tevatron or LHC, which are the cleanest channels for probing the dark sector. We properly take into account the effects of dark radiation and dark cascades on the formation of lepton jets. Finally, we present a concrete definition of a lepton jet and suggest several approaches for inclusive experimental searches.Comment: 23 pages, 13 figures, published version, added section 3.3 expanding on lepton jet's morpholog

    Searching for the light dark gauge boson in GeV-scale experiments

    Full text link
    We study current constraints and search prospects for a GeV scale vector boson at a range of low energy experiments. It couples to the Standard Model charged particles with a strength <= 10^-3 to 10^-4 of that of the photon. The possibility of such a particle mediating dark matter self-interactions has received much attention recently. We consider searches at low energy high luminosity colliders, meson decays, and fixed target experiments. Based on available data, searches both at colliders and in meson decays can discover or exclude such a scenario if the coupling strength is on the larger side. We emphasize that a dedicated fixed target experiment has a much better potential in searching for such a gauge boson, and outline the desired properties of such an experiment. Two different optimal designs should be implemented to cover the range of coupling strength 10^-3 to 10^-5, and < 10^-5 of the photon, respectively. We also briefly comment on other possible ways of searching for such a gauge boson.Comment: 33 pages, 5 figures; v2: corrected discussion of Upsilon decays, updates to discussion of fixed-target experiments and QED constraints, numerous minor changes, references added; v3: typo corrected relative to the JHEP published versio
    • …
    corecore