292 research outputs found
Sampling Mononychellus tanajoa (Acari: Tetranychidae) on cassava in Africa
Density-specific sampling plans were developed under African conditions for the exotic spider mite, Mononychellus tanajoa (Bondar), a serious pest of cassava, Manihot esculenta. The within-plant distribution of Mononychellus tanajoa was found to favour new foliage, regardless of time of planting or plant age. Consequently, the first developed leaf near the top of the foliage was selected as the sampling unit and related to whole plant populations of M. tanajoa. The relationship between the mite population's variance and mean as measured by Taylor's Power Law proved to be stable over a range of planting dates, seasons and locations. Two binomial sampling plans, one based on Taylor's dispersion parameters and another based on direct field observations, were developed and compared. Binomial sampling, appropriate only for densities below 30 mites per leaf, was replaced by an enumerative procedure based on a ‘quick count' protocol at higher mite densitie
THE PHENOLOGY AND DISTRIBUTION OF APHIDS IN CALIFORNIA ALFALFA AS MODIFIED BY LADYBIRD BEETLE PREDATION (COLEOPTERA: COCCINELLIDAE)
The phenologies and distributions of pea aphid (Acyrthosiphon pisum (Harris)), blue alfalfa aphid (A. kondoi (Shinji)), and spotted alfalfa aphid (Therioaphis maculata (Buckton)) were intensively studied in California alfalfa. The results showed, as expected, that aphid populations across all densities were aggregated; but that ladybird beetle (Hippodamia convergens (G.-M.)) predation increased the degree of aggregation. The distribution parameters of the aphids were estimated using methods developed by Iwao and Kuno (1971
MULTITROPHIC MODELS OF PREDATOR-PREY ENERGETICS: I. AGE-SPECIFIC ENERGETICS MODELS—PEA APHID ACYRTHOSIPHON PISUM (HOMOPTERA: APHIDIDAE) AS AN EXAMPLE
A simple age-specific energetics (calories or biomass) model for the growth and development, reproduction, respiration, ageing, and intrinsic survivorship as a function of temperature and per capita energy availability for pea aphid (Acyrthosiphon pisum (Harris)) is reported. The ratio of energy supply-demand is used to scale all of the rates in the model. The maximum demand for energy based upon current state values is used to drive the Frazer-Gilbert functional response model (i.e. food acquisition), which is a component of the metabolic pool model used to assimilate energy to growth, reproduction, respiration, and egestion. The extensive data sets on pea aphid energetics published by Randolph et al. (1975) were used to develop the model. As the model estimates reproduction (Mx ) and survivorship (Lx ) values, extensive published age-specific life-data sets on pea aphids are used to test it. The results suggest: (1) the lower thermal threshold for development is raised and the upper threshold is lowered as food resources are decreased (2) the temperature-dependent rate of development is slowed with decreasing energy resources (3) the size of individuals and reproduction become smaller as temperature approaches the upper and lower thermal thresholds.A simple model for multitrophic level interactions incorporating the acquisition and assimilation functions is presente
Will climate change increase ozone depletion from low-energy-electron precipitation?
We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO) produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP) is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NO<sub>x</sub> concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NO<sub>x</sub> with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NO<sub>x</sub> effect appears to lose importance due to the different nature of the climate-change induced circulation changes
A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC
The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx, and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM), and scavenging (substituting the existing submodel SCAV). We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism
CD8 T cell function and cross-reactivity explored by stepwise increased peptide-HLA versus TCR affinity.
Recruitment and activation of CD8 T cells occur through specific triggering of T cell receptor (TCR) by peptide-bound human leucocyte antigen (HLA) ligands. Within the generated trimeric TCR-peptide:HLA complex, the molecular binding affinities between peptide and HLA, and between TCR and peptide:HLA both impact T cell functional outcomes. However, how their individual and combined effects modulate immunogenicity and overall T cell responsiveness has not been investigated systematically. Here, we established two panels of human tumor peptide variants differing in their affinity to HLA. For precise characterization, we developed the "blue peptide assay", an upgraded cell-based approach to measure the peptide:HLA affinity. These peptide variants were then used to investigate the cross-reactivity of tumor antigen-specific CD8 T cell clonotypes derived from blood of cancer patients after vaccination with either the native or an affinity-optimized Melan-A/MART-1 epitope, or isolated from tumor infiltrated lymph nodes (TILNs). Vaccines containing the native tumor epitope generated T cells with better functionality, and superior cross-reactivity against potential low affinity escape epitopes, as compared to T cells induced by vaccines containing an HLA affinity-optimized epitope. Comparatively, Melan-A/MART-1-specific TILN cells displayed functional and cross-reactive profiles that were heterogeneous and clonotype-dependent. Finally, we took advantage of a collection of T cells expressing affinity-optimized NY-ESO-1-specific TCRs to interrogate the individual and combined impact of peptide:HLA and TCR-pHLA affinities on overall CD8 T cell responses. We found profound and distinct effects of both biophysical parameters, with additive contributions and absence of hierarchical dominance. Altogether, the biological impact of peptide:HLA and TCR-pHLA affinities on T cell responses was carefully dissected in two antigenic systems, frequently targeted in human cancer immunotherapy. Our technology and stepwise comparison open new insights into the rational design and selection of vaccine-associated tumor-specific epitopes and highlight the functional and cross-reactivity profiles that endow T cells with best tumor control capacity
Inflammatory B cells correlate with failure to checkpoint blockade in melanoma patients.
The understanding of the role of B cells in patients with solid tumors remains insufficient. We found that circulating B cells produced TNFα and/or IL-6, associated with unresponsiveness and poor overall survival of melanoma patients treated with anti-CTLA4 antibody. Transcriptome analysis of B cells from melanoma metastases showed enriched expression of inflammatory response genes. Publicly available single B cell data from the tumor microenvironment revealed a negative correlation between TNFα expression and response to immune checkpoint blockade. These findings suggest that B cells contribute to tumor growth via the production of inflammatory cytokines. Possibly, these B cells are different from tertiary lymphoid structure-associated B cells, which have been described to correlate with favorable clinical outcome of cancer patients. Further studies are required to identify and characterize B cell subsets and their functions promoting or counteracting tumor growth, with the aim to identify biomarkers and novel treatment targets
- …