1,491 research outputs found
Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I.
In the past several years, a number of cellular proteins have been identified as candidate entry receptors for hepatitis C virus (HCV) by using surrogate models of HCV infection. Among these, the tetraspanin CD81 and scavenger receptor B type I (SR-BI), both of which localize to specialized plasma membrane domains enriched in cholesterol, have been suggested to be key players in HCV entry. In the current study, we used a recently developed in vitro HCV infection system to demonstrate that both CD81 and SR-BI are required for authentic HCV infection in vitro, that they function cooperatively to initiate HCV infection, and that CD81-mediated HCV entry is, in part, dependent on membrane cholesterol
Investigating the impact of feedback update interval on the efficacy of restorative brain–computer interfaces
Restorative brain-computer interfaces (BCIs) have been proposed to enhance stroke rehabilitation. Restorative BCIs are able to close the sensorimotor loop by rewarding motor imagery (MI) with sensory feedback. Despite the promising results from early studies, reaching clinically significant outcomes in a timely fashion is yet to be achieved. This lack of efficacy may be due to suboptimal feedback provision. To the best of our knowledge, the optimal feedback update interval (FUI) during MI remains unexplored. There is evidence that sensory feedback disinhibits the motor cortex. Thus, in this study, we explore how shorter than usual FUIs affect behavioural and neurophysiological measures following BCI training for stroke patients using a single-case proof-of-principle study design. The action research arm test was used as the primary behavioural measure and showed a clinically significant increase (36%) over the course of training. The neurophysiological measures including motor evoked potentials and maximum voluntary contraction showed distinctive changes in early and late phases of BCI training. Thus, this preliminary study may pave the way for running larger studies to further investigate the effect of FUI magnitude on the efficacy of restorative BCIs. It may also elucidate the role of early and late phases of motor learning along the course of BCI training
TRIM63 (MuRF-1) Gene Polymorphism is Associated with Biomarkers of Exercise-Induced Muscle Damage
Unaccustomed strenuous exercise can lead to muscle strength loss, inflammation and delayed onset muscle soreness, which may be influenced by genetic variation. We investigated if a missense single nucleotide polymorphism (A>G, rs2275950) within the TRIM63 gene (encoding MuRF-1 and potentially affecting titin mechanical properties) was associated with the variable response to unaccustomed eccentric exercise. Sixty-five untrained, healthy participants (genotyped for rs2275950: AA, AG and GG) performed 120 maximal eccentric knee extensions (ECC) to induce muscle damage. Isometric and isokinetic maximal voluntary knee extension contractions (MVCs) and muscle soreness were assessed before, immediately after, and 48h after ECC. AA homozygotes were consistently stronger [baseline isometric MVC: 3.23±0.92 Nm/kg (AA) vs. 2.09±0.67 Nm/kg (GG); p=0.006] and demonstrated less muscle soreness over time (p=0.022) compared to GG homozygotes. This may be explained by greater titin stiffness in AA homozygotes, leading to intrinsically stronger muscle fibers that are more resistant to eccentric damaging contractions
Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse
We present a joint experimental and theoretical study on strong-field
photo-ionization of sodium atoms using chirped femtosecond laser pulses. By
tuning the chirp parameter, selectivity among the population in the highly
excited states 5p, 6p, 7p and 5f, 6f is achieved. Different excitation pathways
enabling control are identified by simultaneous ionization and measurement of
photoelectron angular distributions employing the velocity map imaging
technique. Free electron wave packets at an energy of around 1 eV are observed.
These photoelectrons originate from two channels. The predominant 2+1+1
Resonance Enhanced Multi-Photon Ionization (REMPI) proceeds via the strongly
driven two-photon transition , and subsequent
ionization from the states 5p, 6p and 7p whereas the second pathway involves
3+1 REMPI via the states 5f and 6f. In addition, electron wave packets from
two-photon ionization of the non-resonant transiently populated state 3p are
observed close to the ionization threshold. A mainly qualitative five-state
model for the predominant excitation channel is studied theoretically to
provide insights into the physical mechanisms at play. Our analysis shows that
by tuning the chirp parameter the dynamics is effectively controlled by dynamic
Stark-shifts and level crossings. In particular, we show that under the
experimental conditions the passage through an uncommon three-state "bow-tie"
level crossing allows the preparation of coherent superposition states
Complete Solving for Explicit Evaluation of Gauss Sums in the Index 2 Case
Let be a prime number, for some positive integer , be a
positive integer such that , and let \k be a primitive
multiplicative character of order over finite field \fq. This paper
studies the problem of explicit evaluation of Gauss sums in "\textsl{index 2
case}" (i.e. f=\f{\p(N)}{2}=[\zn:\pp], where \p(\cd) is Euler function).
Firstly, the classification of the Gauss sums in index 2 case is presented.
Then, the explicit evaluation of Gauss sums G(\k^\la) (1\laN-1) in index 2
case with order being general even integer (i.e. N=2^{r}\cd N_0 where
are positive integers and is odd.) is obtained. Thus, the
problem of explicit evaluation of Gauss sums in index 2 case is completely
solved
Relation between QT interval variability and cardiac sympathetic innervation in patients with diabetes mellitus
Computing in Cardiology 2011, 18-21 September 2011, Zhejiang University, Hangzhou, ChinaElevated QT interval variability (QTV) has been asso- ciated with increased cardiac mortality, but the underlying mechanisms are incompletely understood. Sympathetic ac- tivity is thought to be a main contributor to QTV. The aim of this study was to investigate the relation between car- diac sympathetic integrity and QTV in 15 patients with type 2 diabetes mellitus and varying degrees of cardiac autonomic neuropathy. Cardiac sympathetic innervation was assessed by 123I-mIBG scintigraphy based on heart- to-mediastinum ratio of 123I-mIBG uptake 4 hours after infusion. To assess QTV high resolution ECGs (1000 Hz) were recorded during standing. Beat-to-beat QT inter- vals were calculated over a period of 5 minutes, using a template-stretching algorithm. QTV was quantified using time and frequency domain measures as well as non-linear approaches (symbolic dynamics, fractal dimension). The group mean and standard deviation of HMR values were 1.07 ± 0.48. Time and frequency domain QTV parame- ters were significantly increased in subjects with sympa- thetic dysinnervation and inversely correlated with HMR (r = −0.7, p < 0.001). In conclusion, there is a clear link between sympathetic dysinnervation and elevated QTV in patients with type 2 diabetes mellitus during sympathetic activation. Sympathetic dysinnervation is associated with increased ventricular repolarization lability.Mathias Baumert, Julian Sacre and Bennett Franjichttp://www.cinc.org/archives/2011
- …