117 research outputs found
Reirradiation as part of a salvage treatment approach for progressive non-pontine pediatric high-grade gliomas: preliminary experiences from the German HIT-HGG study group
Background and purpose: The aim of the present analysis was to assess the feasibility, toxicity, and the tumor control of reirradiation as a salvage treatment for progressive pediatric non-pontine high-grade gliomas (HGG). Patients and methods: The database of the Reference Center for Radiation Oncology of the German HIT (HIT = German acronym for brain tumor) treatment network for childhood brain tumors was screened for children who were reirradiated for progressive non-pontine HGG. Results: We identified eight patients (WHO grade III: n = 5; WHO grade IV: n = 3) who underwent reirradiation between April 2006 and July 2012. Median age was 13.5 years at primary diagnosis and 14.8 years at first progression. All patients initially underwent surgery (incomplete resection, n = 7; biopsy, n = 1) followed by radiochemotherapy. Relapses occurred inside (n = 2), at the margin (n = 4), and outside of the preirradiated area (n = 2). In all patients, reirradiation was tolerated well without significant acute toxicity. Temporary clinical improvement and tumor regression on magnetic resonance imaging (MRI) following reirradiation was reported (n = 3). However, all patients finally died by disease progression. Median survival time was 26.2 months from initial diagnosis and 11.4 months after first progression. Median time interval between initial radiotherapy and first reirradiation was 9.0 months. In six patients, all macroscopic tumor deposits were reirradiated. In these patients, median progression-free (overall) survival from the start of reirradiation was 2.4 (4.6) months. Conclusion: Our analysis, although based on a limited patient number, suggests that reirradiation of progressive non-pontine HGG is feasible in children. Benefit in terms of quality of life and/or survival needs to be assessed in a prospective and ideally in a randomized manner
Reirradiation as part of a salvage treatment approach for progressive non-pontine pediatric high-grade gliomas: preliminary experiences from the German HIT-HGG study group
Background and purpose: The aim of the present analysis was to assess the feasibility, toxicity, and the tumor control of reirradiation as a salvage treatment for progressive pediatric non-pontine high-grade gliomas (HGG). Patients and methods: The database of the Reference Center for Radiation Oncology of the German HIT (HIT = German acronym for brain tumor) treatment network for childhood brain tumors was screened for children who were reirradiated for progressive non-pontine HGG. Results: We identified eight patients (WHO grade III: n = 5; WHO grade IV: n = 3) who underwent reirradiation between April 2006 and July 2012. Median age was 13.5 years at primary diagnosis and 14.8 years at first progression. All patients initially underwent surgery (incomplete resection, n = 7; biopsy, n = 1) followed by radiochemotherapy. Relapses occurred inside (n = 2), at the margin (n = 4), and outside of the preirradiated area (n = 2). In all patients, reirradiation was tolerated well without significant acute toxicity. Temporary clinical improvement and tumor regression on magnetic resonance imaging (MRI) following reirradiation was reported (n = 3). However, all patients finally died by disease progression. Median survival time was 26.2 months from initial diagnosis and 11.4 months after first progression. Median time interval between initial radiotherapy and first reirradiation was 9.0 months. In six patients, all macroscopic tumor deposits were reirradiated. In these patients, median progression-free (overall) survival from the start of reirradiation was 2.4 (4.6) months. Conclusion: Our analysis, although based on a limited patient number, suggests that reirradiation of progressive non-pontine HGG is feasible in children. Benefit in terms of quality of life and/or survival needs to be assessed in a prospective and ideally in a randomized manner
Radical Treatment of Non-Small-Cell Lung Cancer Patients with Synchronous Oligometastases Long-Term Results of a Prospective Phase II Trial (Nct01282450)
BackgroundStage IV non–small-cell lung cancer (NSCLC) patients with oligometastases (< 5 metastatic lesions) may experience long-term survival when all macroscopic tumor sites are treated radically, but no prospective data on NSCLCs with synchronous oligometastases are available.MethodsA prospective single-arm phase II trial was conducted. The main inclusion criteria were pathologically proven NSCLC stage IV with less than five metastases at primary diagnosis, amendable for radical local treatment (surgery or radiotherapy). The study is listed in clinicaltrials.gov, number NCT01282450.ResultsForty patients were enrolled, 39 of whom were evaluable (18 men, 21 women); mean age was 62.1 ± 9.2 years (range, 44–81). Twenty-nine (74%) had local stage III; 17 (44%) brain, seven (18%) bone, and four (10%) adrenal gland metastases. Thirty-five (87%) had a single metastatic lesion. Thirty-seven (95%) of the patients received chemotherapy as part of their primary treatment. Median overall survival (OS) was 13.5 months (95% confidence interval 7.6–19.4); 1-, 2-, and 3-year OS was 56.4%, 23.3%, and 17.5%, respectively. Median progression-free survival (PFS) was 12.1 months (95% confidence interval 9.6–14.3); 1-year PFS was 51.3%, and both 2- and 3-year PFS was 13.6%. Only two patients (5%) had a local recurrence. No patient or tumor parameter, including volume and 18F-deoxyglucose uptake was significantly correlated with OS or PFS. The treatment was well tolerated.ConclusionIn this phase II study, long-term PFS was found in a subgroup of NSCLC patients with synchronous oligometastases when treated radically. Identification of this favorable subgroup before therapy is needed
Postoperative radiotherapy for meningiomas - a decision-making analysis.
BACKGROUND
The management of meningiomas is challenging, and the role of postoperative radiotherapy is not standardized.
METHODS
Radiation oncology experts in Swiss centres were asked to participate in this decision-making analysis on the use of postoperative radiotherapy (RT) for meningiomas. Experts from ten Swiss centres agreed to participate and provided their treatment algorithms. Their input was converted into decision trees based on the objective consensus methodology. The decision trees were used as a basis to identify consensus and discrepancies in clinical routine.
RESULTS
Several criteria used for decision-making in postoperative RT in meningiomas were identified: histological grading, resection status, recurrence, location of the tumour, zugzwang (therapeutic need to treat and/or severity of symptoms), size, and cell division rate. Postoperative RT is recommended by all experts for WHO grade III tumours as well as for incompletely resected WHO grade II tumours. While most centres do not recommend adjuvant irradiation for WHO grade I meningiomas, some offer this treatment in recurrent situations or routinely for symptomatic tumours in critical locations. The recommendations for postoperative RT for recurrent or incompletely resected WHO grade I and II meningiomas were surprisingly heterogeneous.
CONCLUSIONS
Due to limited evidence on the utility of postoperative RTÂ for meningiomas, treatment strategies vary considerably among clinical experts depending on the clinical setting, even in a small country like Switzerland. Clear majorities were identified for postoperative RTÂ in WHOÂ grade III meningiomas and against RT for hemispheric grade I meningiomas outside critical locations. The limited data and variations in clinical recommendations are in contrast with the high prevalence of meningiomas, especially in elderly individuals
Dose-intensified stereotactic body radiotherapy for painful vertebral metastases: A randomized phase 3 trial.
BACKGROUND
The purpose of this randomised study was to determine whether dose-intensified stereotactic body radiotherapy (SBRT) for painful vertebral metastases results in increased rates of pain improvement compared with conventional external beam radiotherapy (cEBRT) (control) 6 months after treatment.
METHODS
This randomized, controlled phase 3 trial was conducted between November 2016 and January 2023, when it was stopped early. Patients were eligible if they were aged 18 years or older; had one or two painful, stable, or potentially unstable vertebral metastases; and had a life expectancy of 1 year or longer according to the investigator's estimates. Patients received 48.5 grays (Gy) in 10 fractions (with epidural involvement) or 40 Gy in five fractions (without epidural involvement) in the SBRT group and 30 Gy in 10 fractions or 20 Gy in five fractions in the cEBRT group, respectively. The primary end point was an improvement in the pain score at the treated site by at least 2 points (on a visual analog scale from 0 to 10 points) at 6-month follow-up. Data were analyzed on an intention-to-treat and per-protocol basis.
RESULTS
Of 214 patients who were screened for eligibility, 63 were randomized 1:1 between SBRT (33 patients with 36 metastases) and cEBRT (30 patients with 31 metastases). The median age of all patients was 66 years, and 40 patients were men (63.5%). In the intention-to-treat analysis, the 6-month proportion of patients who had metastases with pain reduction by 2 or more points was significantly higher in the SBRT group versus the control group (69.4% vs. 41.9%, respectively; two-sided p = .02). Changes in opioid medication intake relative to baseline were nonsignificant between the groups. No differences were observed in vertebral compression fracture or adverse event rates between the groups.
CONCLUSIONS
Dose-intensified SBRT improved pain score more effectively than cEBRT at 6 months
Dose-intensified stereotactic body radiotherapy for painful vertebral metastases: A randomized phase 3 trial
BACKGROUND
The purpose of this randomised study was to determine whether dose-intensified stereotactic body radiotherapy (SBRT) for painful vertebral metastases results in increased rates of pain improvement compared with conventional external beam radiotherapy (cEBRT) (control) 6 months after treatment.
METHODS
This randomized, controlled phase 3 trial was conducted between November 2016 and January 2023, when it was stopped early. Patients were eligible if they were aged 18 years or older; had one or two painful, stable, or potentially unstable vertebral metastases; and had a life expectancy of 1 year or longer according to the investigator's estimates. Patients received 48.5 grays (Gy) in 10 fractions (with epidural involvement) or 40 Gy in five fractions (without epidural involvement) in the SBRT group and 30 Gy in 10 fractions or 20 Gy in five fractions in the cEBRT group, respectively. The primary end point was an improvement in the pain score at the treated site by at least 2 points (on a visual analog scale from 0 to 10 points) at 6-month follow-up. Data were analyzed on an intention-to-treat and per-protocol basis.
RESULTS
Of 214 patients who were screened for eligibility, 63 were randomized 1:1 between SBRT (33 patients with 36 metastases) and cEBRT (30 patients with 31 metastases). The median age of all patients was 66 years, and 40 patients were men (63.5%). In the intention-to-treat analysis, the 6-month proportion of patients who had metastases with pain reduction by 2 or more points was significantly higher in the SBRT group versus the control group (69.4% vs. 41.9%, respectively; two-sided p = .02). Changes in opioid medication intake relative to baseline were nonsignificant between the groups. No differences were observed in vertebral compression fracture or adverse event rates between the groups.
CONCLUSIONS
Dose-intensified SBRT improved pain score more effectively than cEBRT at 6 months
Memory in low-grade glioma patients treated with radiotherapy or temozolomide: a correlative analysis of EORTC study 22033-26033
Background: EORTC study 22033-26033 showed no difference in progression-free survival between high-risk low-grade glioma receiving either radiotherapy (RT) or temozolomide (TMZ) chemotherapy alone as primary treatment. Considering the potential long-term deleterious impact of RT on memory functioning, this study aims to determine whether TMZ is associated with less impaired memory functioning. Methods: Using the Visual Verbal Learning Test (VVLT), memory functioning was evaluated at baseline and subsequently every 6 months. Minimal compliance for statistical analyses was set at 60%. Conventional indices of memory performance (VVLT Immediate Recall, Total Recall, Learning Capacity, and Delayed Recall) were used as outcome measures. Using a mixed linear model, memory functioning was compared between treatment arms and over time. Results: Neuropsychological assessment was performed in 98 patients (53 RT, 46 TMZ). At 12 months, compliance had dropped to 66%, restricting analyses to baseline, 6 months, and 12 months. At baseline, patients in either treatment arm did not differ in memory functioning, sex, age, or educational level. Over time, patients in both arms showed improvement in Immediate Recall (P = 0.017) and total number of words recalled (Total Recall; P < 0.001, albeit with delayed improvement in RT patients (group by time; P = 0.011). Memory functioning was not associated with RT gross, clinical, or planned target volumes. Conclusion: In patients with high-risk low-grade glioma there is no indication that in the first year after treatment, RT has a deleterious effect on memory function compared with TMZ chemotherapy. Keywords: chemotherapy; low-grade glioma; memory functioning; radiotherapy
A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities.
Personalized cancer treatments using combinations of drugs with a synergistic effect is attractive but proves to be highly challenging. Here we present an approach to uncover the efficacy of drug combinations based on the analysis of mono-drug effects. For this we used dose-response data from pharmacogenomic encyclopedias and represent these as a drug atlas. The drug atlas represents the relations between drug effects and allows to identify independent processes for which the tumor might be particularly vulnerable when attacked by two drugs. Our approach enables the prediction of combination-therapy which can be linked to tumor-driving mutations. By using this strategy, we can uncover potential effective drug combinations on a pan-cancer scale. Predicted synergies are provided and have been validated in glioblastoma, breast cancer, melanoma and leukemia mouse-models, resulting in therapeutic synergy in 75% of the tested models. This indicates that we can accurately predict effective drug combinations with translational value
- …