28 research outputs found

    Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    Get PDF
    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype

    Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS

    Get PDF
    A combination of yeast genetics and protein biochemistry define how the fused in sarcoma (FUS) protein might contribute to Lou Gehrig's disease

    Variants in CUL4B are Associated with Cerebral Malformations

    Get PDF
    Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B

    Acute mountain sickness.

    Get PDF
    Acute mountain sickness (AMS) is a clinical syndrome occurring in otherwise healthy normal individuals who ascend rapidly to high altitude. Symptoms develop over a period ofa few hours or days. The usual symptoms include headache, anorexia, nausea, vomiting, lethargy, unsteadiness of gait, undue dyspnoea on moderate exertion and interrupted sleep. AMS is unrelated to physical fitness, sex or age except that young children over two years of age are unduly susceptible. One of the striking features ofAMS is the wide variation in individual susceptibility which is to some extent consistent. Some subjects never experience symptoms at any altitude while others have repeated attacks on ascending to quite modest altitudes. Rapid ascent to altitudes of 2500 to 3000m will produce symptoms in some subjects while after ascent over 23 days to 5000m most subjects will be affected, some to a marked degree. In general, the more rapid the ascent, the higher the altitude reached and the greater the physical exertion involved, the more severe AMS will be. Ifthe subjects stay at the altitude reached there is a tendency for acclimatization to occur and symptoms to remit over 1-7 days

    A novel PITX2 mutation and a polymorphism in a 5-generation family with Axenfeld-Rieger anomaly and coexisting Fuchs' endothelial dystrophy

    Full text link
    PURPOSE To investigate the clinical and genetic appearance of Axenfeld-Rieger anomaly or syndrome (ARAS) and Fuchs' endothelial dystrophy (FED) in a 5-generation pedigree coexpressing both pathologic features in a large number of family members. DESIGN Observational case-control and DNA linkage and screening study. PARTICIPANTS Of 114 family members, 50 underwent clinical investigation and DNA analysis between July 2001 and March 2004. METHODS Linkage at the PITX2 locus was demonstrated using a number of microsatellites mapping to the critical region 4q25 to 4q26. The PITX2 gene was subsequently screened for mutations in all investigated family members. MAIN OUTCOME MEASURE Linkage of the ARAS and FED phenotype and mutation detection in the PITX2 gene. RESULTS Twenty-seven patients were identified as being affected by ARAS. Fuchs' endothelial dystrophy was found in 19 patients. Fifteen patients presented both kinds of anomaly. Deoxyribonucleic acid sequencing revealed 2 heteroallelic DNA variants that segregated together (on the same allele) and were present in all severely affected ARAS individuals. The first variant, g.20913G>T, assumed to be the causative mutation for ARAS, causes amino acid substitution at codon 137 (G137V). A statistically significant 2-point logarithm of the odds score of 4.06 was obtained with marker D4S406. The second variant is likely a polymorphism in the intron between exons 2 and 3 (IVS2+8delCinsGTT) and was detected in heterozygous form in 20% of control individuals. CONCLUSION This gene analysis revealed a novel PITX2 mutation and a polymorphism in a family with ARAS. Whether FED, also manifested in the severely affected individuals, is due to a different but cosegregating gene is to be determined

    High Level of Unequal Meiotic Crossovers at the Origin of the 22q11.2 and 7q11.23 Deletions

    Get PDF
    Interstitial chromosomal deletions at 22q11.2 and 7q11.23 are detected in the vast majority of patients affected by CATCH 22 syndromes and the Williams-Beuren syndrome, respectively. In a group of 15 Williams-Beuren patients, we have shown previously that a large number of 7q11.23 deletions occur in association with an interchromosomal rearrangement, indicative of an unequal crossing-over event between the two homologous chromosomes 7. In this study, we show that a similar mechanism also underlies the formation of the 22q11.2 deletions associated with CATCH 22. In eight out of 10 families with a proband affected by CATCH 22, we were able to show that a meiotic recombination had occurred at the critical deleted region based on segregation analysis of grandparental haplotypes. The incidences of crossovers observed between the closest informative markers, proximal and distal to the deletion, were compared with the expected recombination frequencies between the markers. A significant number of recombination events occur at the breakpoint of deletions in CATCH 22 patients (P=2.99×10−7). The segregation analysis of haplotypes in three-generation families was also performed on an extended number of Williams-Beuren cases (22 cases in all). The statistically significant occurrence of meiotic crossovers (P=4.45×10−9) further supports the previous findings. Thus, unequal meiotic crossover events appear to play a relevant role in the formation of the two interstitial deletions. The recurrence risk for healthy parents in cases where such meiotic recombinations can be demonstrated is probably negligible. Such a finding is in agreement with the predominantly sporadic occurrence of the 22q11.2 and 7q11.23 deletions. No parent-of-origin bias was observed in the two groups of patients with regard to the origin of the deletion and to the occurrence of inter-versus intrachromosomal rearrangement

    A novel locus (DFNA24) for prelingual nonprogressive autosomal dominant nonsyndromic hearing loss maps to 4q35-qter in a large Swiss German kindred

    Get PDF
    Nonsyndromic hearing loss is one of the most genetically heterogeneous traits known. A total of 30 autosomal dominant nonsyndromic hearing-loss loci have been mapped, and 11 genes have been isolated. In the majority of cases, autosomal dominant nonsyndromic hearing loss is postlingual and progressive, with the exception of hearing impairment in families in which the impairment is linked to DFNA3, DFNA8/12, and DFNA24, the novel locus described in this report. DFNA24 was identified in a large Swiss German kindred with a history of autosomal dominant hearing loss that dates back to the middle of the 19th century. The hearing-impaired individuals in this kindred have prelingual, nonprogressive, bilateral sensorineural hearing loss affecting mainly mid and high frequencies. The DFNA24 locus maps to 4q35-qter. A maximum multipoint LOD score of 11.6 was obtained at 208.1 cM at marker D4S1652. The 3.0-unit support interval for the map position of this locus ranges from 205.8 cM to 211.7 cM (5.9 cM)

    Clinical and genetic heterogeneity in Meckel syndrome

    Full text link
    Meckel syndrome (MKS) is a lethal malformation syndrome characterised by posterior meningoencephalocele, polycystic kidneys, fibrotic changes of the liver, and polydactyly. We have previously shown a linkage to chromosome 17q in 17 Finnish Meckel families. In this study we have analysed one Italian, one Austrian (of Turkish origin) and three British MKS families (Caucasian, Pakistani, and Bangladeshi families) for linkage to the MKS locus on chromosome 17q22-q24. We did not observe co-segregation of the disease and marker haplotypes in the Austrian family or in the three British families, of which two represented classical MKS and one a slightly atypical MKS phenotype with longer survival of the patient. In the Italian family the affected and non-affected children did not share the same maternal chromosome and thus this family could represent the same allelic disease as the Finnish MKS families. These results suggest locus heterogeneity in Meckel syndrome--a feature previously suspected based on the highly variable clinical phenotype

    Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes

    Get PDF
    Abstract Background Deleterious variants in the voltage-gated sodium channel type 2 (Nav1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood. Methods To further elucidate the genotype-phenotype correlation of SCN2A variants we investigated the functional effects of six variants representing the phenotypic spectrum by whole-cell patch-clamp studies in transfected HEK293T cells and in-silico structural modeling. Results The two variants p.L1342P and p.E1803G detected in patients with early onset epileptic encephalopathy (EE) showed profound and complex changes in channel gating, whereas the BFNIE variant p.L1563V exhibited only a small gain of channel function. The three variants identified in ID patients without seizures, p.R937C, p.L611Vfs*35 and p.W1716*, did not produce measurable currents. Homology modeling of the missense variants predicted structural impairments consistent with the electrophysiological findings. Conclusions Our findings support the hypothesis that complete loss-of-function variants lead to ID without seizures, small gain-of-function variants cause BFNIE and EE variants exhibit variable but profound Nav1.2 gating changes. Moreover, structural modeling was able to predict the severity of the variant impact, supporting a potential role of structural modeling as a prognostic tool. Our study on the functional consequences of SCN2A variants causing the distinct phenotypes of EE, BFNIE and ID contributes to the elucidation of mechanisms underlying the broad phenotypic variability reported for SCN2A variants

    Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability

    Full text link
    A chromosomal balanced translocation disrupting the MED13L (Mediator complex subunit13-like) gene, encoding a subunit of the Mediator complex, was previously associated with transposition of the great arteries (TGA) and intellectual disability (ID), and led to the identification of missense mutations in three patients with isolated TGA. Recently, a homozygous missense mutation in MED13L was found in two siblings with non-syndromic ID from a consanguineous family. Here, we describe for the first time, three patients with copy number changes affecting MED13L and delineate a recognizable MED13L haploinsufficiency syndrome. Using high resolution molecular karyotyping, we identified two intragenic de novo frameshift deletions, likely resulting in haploinsufficiency, in two patients with a similar phenotype of hypotonia, moderate ID, conotruncal heart defect and facial anomalies. In both, Sanger sequencing of MED13L did not reveal any pathogenic mutation and exome sequencing in one patient showed no evidence for a non-allelic second hit. A further patient with hypotonia, learning difficulties and perimembranous VSD showed a 1 Mb de novo triplication in 12q24.2, including MED13L and MAP1LC3B2. Our findings show that MED13L haploinsufficiency in contrast to the previously observed missense mutations cause a distinct syndromic phenotype. Additionally, a MED13L copy number gain results in a milder phenotype. The clinical features suggesting a neurocristopathy may be explained by animal model studies indicating involvement of the Mediator complex subunit 13 in neural crest induction
    corecore