717 research outputs found

    Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs.

    Get PDF
    Funder: Trinity College, University of CambridgeMetal-insulator-metal (MIM) nanogaps in the canonical nanoparticle-on-mirror geometry (NPoM) provide deep-subwavelength confinement of light with mode volumes smaller than V/V λ < 10-6. However, access to these hotspots is limited by the impendence mismatch between the high in-plane k ∥ of trapped light and free-space plane-waves, making the in- and out-coupling of light difficult. Here, by constructing a nanoparticle-on-foil (NPoF) system with thin metal films, we show the mixing of insulator-metal-insulator (IMI) modes and MIM gap modes results in MIMI modes. This mixing provides multichannel access to the plasmonic nanocavity through light incident from both sides of the metal film. The red-tuning and near-field strength of MIMI modes for thinner foils is measured experimentally with white-light scattering and surface-enhanced Raman scattering from individual NPoFs. We discuss further the utility of NPoF systems, since the geometry allows tightly confined light to be accessed simply through different ports

    Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering

    Get PDF
    Comprehensive reflectivity mapping of the angular dispersion of nanostructured arrays comprising of inverted pyramidal pits is demonstrated. By comparing equivalently structured dielectric and metallic arrays, diffraction and plasmonic features are readily distinguished. While the diffraction features match expected theory, localised plasmons are also observed with severely flattened energy dispersions. Using pit arrays with identical pitch, but graded pit dimensions, energy scaling of the localised plasmon is observed. These localised plasmons are found to match a simple model which confines surface plasmons onto the pit sidewalls thus allowing an intuitive picture of the plasmons to be developed. This model agrees well with a 2D finite-difference time-domain simulation which shows the same dependence on pit dimensions. We believe these tuneable plasmons are responsible for the surface-enhancement of the Raman scattering (SERS) of an attached layer of benzenethiol molecules. Such SERS substrates have a wide range of applications both in security, chemical identification, environmental monitoring and healthcare

    Voltage-controlled electron tunnelling from a single self-assembled quantum dot embedded in a two-dimensional-electron-gas-based photovoltaic cell

    Full text link
    We perform high-resolution photocurrent (PC) spectroscopy to investigate resonantly the neutral exciton ground-state (X0) in a single InAs/GaAs self-assembled quantum dot (QD) embedded in the intrinsic region of an n-i-Schottky photodiode based on a two-dimensional electron gas (2DEG), which was formed from a Si delta-doped GaAs layer. Using such a device, a single-QD PC spectrum of X0 is measured by sweeping the bias-dependent X0 transition energy through that of a fixed narrow-bandwidth laser via the quantum-confined Stark effect (QCSE). By repeating such a measurement for a series of laser energies, a precise relationship between the X0 transition energy and bias voltage is then obtained. Taking into account power broadening of the X0 absorption peak, this allows for high-resolution measurements of the X0 homogeneous linewidth and, hence, the electron tunnelling rate. The electron tunnelling rate is measured as a function of the vertical electric field and described accurately by a theoretical model, yielding information about the electron confinement energy and QD height. We demonstrate that our devices can operate as 2DEG-based QD photovoltaic cells and conclude by proposing two optical spintronic devices that are now feasible.Comment: 34 pages, 11 figure

    Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities

    Get PDF
    Using two-dimensional spectroscopy, we resolve multi-polariton coherences in quantum wells embedded inside a semiconductor microcavity and elucidate how multi-exciton correlations mediate polariton nonlinear dynamics. We find that polariton correlation strengths depend on spectral overlap with the biexciton resonance and that up to at least four polaritons can be correlated, a higher-order correlation than observed to date among excitons in bare quantum wells. The high-order correlations can be attributed to coupling through the cavity mode, although the role of high-order Coulomb correlations cannot be excluded

    Compact strain-sensitive flexible photonic crystals for sensors

    No full text
    A promising fabrication route to produce absorbing flexible photonic crystals is presented, which exploits self-assembly during the shear processing of multi-shelled polymer spheres. When absorbing material is incorporated in the interstitial space surrounding high-refractive-index spheres, a dramatic enhancement in the transmission edge on the short-wavelength side of the band gap is observed. This effect originates from the shifting optical field spatial distribution as the incident wavelength is tuned around the band gap, and results in a contrast up to 100 times better than similar but nonabsorbing photonic crystals. An order-of-magnitude improvement in strain sensitivity is shown, suggesting the use of these thin films in photonic sensors
    • …
    corecore