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Abstract 

Synthetic opals, based on self-assembled arrays of core-shell (bead/matrix) polymer 

microparticles, are a promising platform for next generation bulk-scale photonic structures, 

coatings, fibres and sensors. This perspective article highlights recent work in this area, 

ranging from characterization and application, to advances in more fundamental 

understanding of structural color effects. These advances include visco-elastically-tuned 

symmetry breaking, the observation of anisotropic optical scattering, and the study of 

polymer opals as an analogue to the intrinsically disordered, low refractive-index contrast 

systems associated with opals seen in nature. 
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INTRODUCTION 

The novel use of soft nanomaterials in the design of photonic structures, with macroscale 

internal structural bulk-ordering, presents opportunities for a step-change away from the 

monolithic architectures which are currently relied upon. Photonic crystals, where periodic 

variations in refractive index create photonic “band-gaps”, allow the development of 

structured materials with distinguishing optical properties (e.g. structural color), which are 

not accessible using dyes or pigments. 

 In recent work, a low-cost, industrial-scale technique to produce flexible opals has 

recently been developed using melting and shear-ordering of core/shell polymer 

nanoparticles.[1,2] This is in marked contrast to many previous strategies for constructing 

photonic crystals, which have relied upon top-down lithography[3] or solvent driven self-

assembly of high and low refractive index components.[4] Even simple structures, such as 

photonic crystals fcc lattices, based on these methods cannot be fabricated in any scalable 

fashion, and the resultant structures notably lack any mechanical robustness.  No precedents 

exist for the application of shear ordering techniques to these granular solvent-free systems, 

which allow formation of permanent, mechanically robust composites in the solid-state 

(figure 1). The resultant structures are low-defect flexible polymer fcc opals films, with 

fundamental optical resonances tunable across the visible and near-infrared regions (by 

varying the precursor particle size from 200-350 nm, and hence the resulting lattice 

parameter). In the lower refractive-index contrast regime associated with these polymer 

composites (n ≈ 0.1), color generation arises through spectrally-resonant scattering inside a 

3D fcc-lattice photonic crystal generating a “scattering cone”,[5,6] as opposed to normal 

reflective iridescence based on Bragg diffraction. In addition, one of the most attractive 

features of elastomeric polymer opals is the tunability of their perceived color by the bending 

or stretch modification of the (111) plane spacing.  

 The fabrication technique employed uses shear-flow self-assembly of core-interlayer-

shell (CIS) polymer particles into 3D cubic lattices through extrusion at high temperatures. 

As illustrated in Figure 1b, the core-shell particle precursors are typically 200-300 nm in 

diameter, and consist of a hard polystyrene (PS) core, coated with a thin 

polymethylmethacrylate (PMMA) “grafting” layer, and a soft polyethylacrylate (PEA) outer 

shell. These particles are prepared using a multi-stage emulsion polymerization process.[1] 

The material may be processed using a twin-screw mini-extruder and adjustable temperatures 
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of 25-250°C. Bulk quantities of the opal precursor materials (as shown in figure 1a) are 

manually driven into the extruder, where they form a melt and are homogenized under the 

extreme shear forces provided by recycling through the screws. The overpressure generated 

then drives the shear-ordered granular material through a narrow-bore stainless steel die, 

producing bulk opaline ribbons. In such polymer opal films, ordering proceeds from the outer 

flat surfaces which seed accumulation of (111) planes,[7] but recent work has now shown 

that it is also possible to produce opaline fibers by extrusion in a wire geometry.[8]  

 Additionally, the introduction of a small (~0.05% by weight) fraction of carbon 

nanoparticle pigment into the interstices of the photonic crystal lattice does not disrupt the 

lattice quality, but results in a remarkable increase in the color saturation of the opals with the 

concentration of carbon, as shown in figure 1e.[5] This principle is of fundamental interest in 

understanding the origins of structural colors and iridescence in natural opals, such as those 

in minerals or in biological structures.[9] However, the main difficulty of this fabrication 

approach has been the lack of true bulk order. 

 A significant advance was achieved with an edge-induced rotational shearing (EIRS) 

process, which produces reproducible highly uniform samples with bulk-ordering of sub-

micrometer components, greatly enhancing both the intensity and chromaticity of the 

observed structural color.[10] A schematic of this mechanically controlled process and the 

associated optical properties are given in figure 1f. In brief, the process consists of a 

combination of bulk extrusion, followed by rolling (linear shear) into ~100 m thick films, 

and finally edge-induced rotational shearing (across a polished metallic hot-edge, with an 

apex angle of α = 90° and radius of curvature < 10 μm) yielding permanent rolls of opaline 

film. As a powerful demonstration of the 3D bulk ordering achieved in these opaline films, 

optical diffraction experiments readily revealed very clear and distinctive diffraction-spot 

patterns, with a characteristic six-fold symmetry (figure 1d), which was precisely aligned to 

the processing direction in the EIRS process. Whilst the appearance of such well-resolved 

diffraction spots in transmission for the EIRS sample represents compelling evidence of 

crystallinity throughout the film of many hundred sphere layers, the appearance of six spots is 

also indicative of the presence of twinning and/or stacking faults within the cubic crystal 

structure.[11] 
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APPLICATIONS OF POLYMER OPALS 

The demonstration of reproducible scale-up of these elastomeric synthetic opaline films to 

industrial length scales makes them very attractive as a route to a wide range of large-area 

photonics applications, including sensors and coatings. In this perspective article, we aim to 

summarize some of the most notable and promising examples, within the context of the 

underlying science.  

 In figure 2a, we see representative images of polymer opals with strong and vivid 

iridescence, as defined by the core-spacing and viewing angle. In addition to their 

subjectively decorative/aesthetic qualities, the unique structural color properties of polymeric 

opals, together with intrinsic processability, stretchability, and durability also potentially 

make them attractive for applications such as security or anti-forgery labeling, in banknotes, 

credit-cards and designer merchandise, for example. An illustration of how these favourable 

properties relate to applications is given in figure 2b, where a high-quality polymer opal film 

has been prepared as a novel textile, by attachment onto a fabric backing, using simple means 

of applying a cool iron-press. The sample shows all of the attractive properties of elastic 

stretch-, bend- and twist-tunability, in addition to a vivid structural color effect.[12]  

 As an extension of the polymer processing technologies reviewed here, extruding 

high-quality opaline fibers in an industrially-scalable fashion is now also practical (figure 

2c).[13] As with the opaline thin-films, these fibers exhibit structural color based on the self-

assembly of sub-micron core-shell particles, with a spectrum which is stretch-tunable across 

the visible region. Fibres are directly extruded by using modified circular dies of diameters 

ranging from 100-2000 m. Since ordering during standard extrusion proceeds from the outer 

flat surfaces which seed accumulation of (111) planes, it was far from obvious that opal fibers 

could be produced.[7] However, in addition to experimental demonstration, a dynamic 

theoretical (granular) model predicts the formation of ordered close-packed layers on the 

outer region of the fiber, and the growth of this order inwards from these seed layers. In both 

experiment and theory, fibers are characterized by an internal substructure, in which a 

concentric zone near the exposed surface develops particularly strong structural color. After 

suitable UV-A photo-crosslinking, the final fiber products have sufficient mechanical 

robustness to allow them to be hand-knitted into stretchable fabrics. These elastically-tuned 

fibers are thus potential candidates for a novel range of nano-materials and clothing fabrics, 

utilizing strong structural color effects as a replacement for toxic and photodegradable dyes.  
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 Large-scale shear-ordered photonic crystals have also been shown to exhibit unusual 

thermochromic properties.[14] By balancing the refractive index of the polymer core and 

composite shell components at room temperature, transparent films are created, which 

become coloured on heating (figure 2d). Since this scattering-based structural color depends 

only on resonant Bragg scattering of non-pigmented components, it can be tuned to any 

wavelength. Whilst it is expected that there is a thermally induced change in refractive index 

contrast, the observed color shifts with temperature are not accounted for by simple theory, 

and probably reflect a more complex interaction between the core and shell indices, and the 

mechanical expansion and strain effects upon heating. This thermochromic mechanism can 

also be harnessed in a wide variety of ways by tuning core and shell sizes and polymer 

compositions, pointing towards a potential use of such opals in thermal sensors and 

indicators, where large areas may be important (e.g. food packaging). Further optimization 

and incorporation of other (e.g. emissive) nanoparticles would also open a range of potential 

applications in displays and in switchable structural color materials.[15] 

 The prospects for utilizing such photonic materials in optoelectronic applications, 

such as photovoltaics or electrically tunable colour films, require conductive colloidal 

crystals which have been unavailable thus far. In the recent work of Imai et al.,[16] 

electrically conductive polymeric 3D photonic crystals are prepared by the shear ordering of 

hetero-coagulated composites consisting of monodisperse core-shell polymer spheres and 

single-walled carbon nanotubes (SWNTs). The retention of strong iridescent color indicates 

that the highly ordered polymer opal structures are not disrupted by the presence of the 

conductive nanotube networks. Thermal annealing leads to a significant increase in the 

overall electrical conductivity of thin-film samples yielding DC conductivities of 10
-4

 S cm
-1

, 

with percolation thresholds of less than 0.4 wt% of SWNT. As well as this work being an 

important milestone in the quest for “conductive photonics”, it is anticipated that further 

optimization of processing parameters, such as those of the sample annealing, will enable yet 

higher conductivities to be reached, making further practical applications feasible. Following 

on from Imai et al., electrically tuned photonic crystals have also been demonstrated by 

applying fields across shear-assembled elastomeric polymer opal thin films.[17] At 

increasing applied electric-fields, the polymer opal films stretch biaxially under Maxwell 

stress, deforming the nanostructure and producing marked color changes. This electro-optic 

tuning of the photonic bandgap is rapid (switching at < 100 ms), and repeatable over many 

cycles, bridging the gap between electro-active materials and photonic crystals. 
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A PLATFORM FOR EXPLORING THE FUNDAMENTAL PHYSICS OF 

PHOTONIC CRYSTALS AND STRUCTURAL COLOR  

Besides the technological applications of polymer opals, such systems are interesting 

analogues of structural color in nature, as well as the intensity of scatter from clouds and 

radar imaging. Additionally, the durable visco-elastic properties of the samples allow access 

to a whole host of experiments, and the associated scientific insights, which are mechanically 

impossible in more conventional monolithic photonic crystals.   

 Symmetry is a crucial ingredient in the self-assembly of nanostructures with novel 

optical, electronic, magnetic or thermal functionality. However many new physical properties 

that are desirable to access, depend on breaking this symmetry to introduce higher-order 

complexity, which has proved difficult.[18] Polymer opals have been used as a paradigm to 

demonstrate elastically induced phase transitions to break the structural symmetry of self-

assembled nanostructures, producing significantly modified functional properties. Stretching 

ordered polymer opals in different directions transforms the fcc photonic crystal into 

correspondingly distorted monoclinic lattices. This breaks the conventional selection rules for 

scattering from the crystal planes, yielding extra multiply scattered colors when the phase-

breaking stretch is in specific directions. Scattering has been spectroscopically tracked in real 

time as the samples distort, revealing a new phase transition into a lower symmetry 

monoclinic lattice structure.[19] New, normally-forbidden Bragg peaks become immediately 

visible (as the condition for fcc that Miller indices h,k,l must be all even or all odd is broken); 

such effects have not even been experimentally observed in atomic crystals.  

 Photonic properties have also been widely studied in natural biomaterials which self-

assemble in more sophisticated ways,[20] such as butterfly wings, beetle carapaces, and 

flower petals. However, such self-assembly processes intrinsically incorporate disorder in the 

nanostructures, which degrades the reflectivity but enhances the wider scattering of light (i.e. 

into “scattering cones”). In that sense, polymer opals represent an important analogue by 

which a full understanding of the role of such disorder in the optics are such systems may be 

characterized. Recently, hyperspectral goniometry has been used with a polymer opal sample 

to demonstrate how to completely reconstruct the reciprocal space of scattering vectors.[21] 

This yields the three dimensional shape of the dominant reciprocal-lattice point responsible 

for the intense structural color, and separates resonant and background scattering processes. 

In these crystals, a previously unknown but significant anisotropy of the scattering process 
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which dominates the optical interactions, was identified. Such measurements yield a 

composite image at each incident wavelength (figure 3a) which captures the front surface 

specular reflection peak while clearly resolving the resonant-scattering cone (which is up to 

two orders of magnitude less intense). Analysis reveals that the scattering is anisotropic in all 

three directions, appearing as a flattened ellipsoid. While an anisotropic response to stress has 

been previously reported (described above), this optical anisotropy is intrinsic to the 

nanostructure, appearing in all unstretched samples. This anisotropy has origins in the 

directionalized ordering of the EIRS process and it was found that short chain defects govern 

the observed angular scattering cone. This implies that defects spatially localize light over 

length scales of many sphere periods, and their control thus plays a crucial role in self-

assembly of structurally colored photonic crystals. 

 The refractive index contrast (n) between the core beads and the matrix polymer is 

essential for the appearance of such structural color; however, it is not clear how the strength 

of such resonances changes as n increases. The index contrast between core and shell 

materials can be varied by controlling the chemical composition of the shell material using 

low refractive-index fluorinated monomers[22] (figure 3b, inset).[23] The effect of n, on the 

resonant scattering and reflectivity of polymer opals, within a regime of n  < 0.2 has been 

recently studied. The strength of resonant Bragg reflection from polymer opals is found to 

vary linearly with the refractive-index contrast, n, in marked contrast to the expected 

quadratic buildup of Fresnel reflections scaling as (n)
2
. This occurs due to the interplay of 

disorder and periodicity, in close agreement with a simple 1-dimensional periodic model with 

inbuilt disorder, as shown in figure 3b.[24]  Hence, the degree of disorder in the sample 

demonstrably plays a fundamental role in these linear dependencies. In previous studies of 

polymer opals, we presented crystallographic evidence of stacking faults and/or twinning 

within the cubic structures, which introduces a certain level of disorder throughout the films. 

It is likely that these characteristics are also intrinsic to many self-assembled periodic 

structures, including those found in nature.[9,20,25] 
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SUMMARY 

Elastomeric polymer opals, in both thin-film and fibre form, can now be manufactured using 

ubiquitous polymer processing techniques and have many attractive functional features; 

intense structural color, with inherent stretch- and bend-tunability, and excellent durability 

and mechanical robustness. As demonstrated, these opals are thus potential candidates for a 

novel range of nano-materials, coatings, sensors, and also clothing fabrics, utilizing structural 

color effects as a replacement for toxic and photodegradable dyes. 

 In addition to these innovative applications, polymer opals have also proved to be a 

highly fruitful platform for more fundamental experimental studies of the physics of photonic 

crystals, structural color, and of the self-assembled optical structures seen in Nature. In 

particular, practical demonstrations of symmetry breaking in photonic crystals, and a deeper 

understanding of the roles of disorder, anisotropy and index-contrast in structural color, have 

been achieved. We anticipate further developments in this regard in the future, and the 

extension of the archetypal core-shell polymer opal system, into a yet wider range of 

engineered functionalities and applications, including novel biomimetic strategies.  
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FIGURES 

 

 

Figure 1; (a) A bulk batch of as-synthesized core-interlayer-shell (CIS) particles, used for 

polymer opal production. (b) Schematic of the CIS system, based on polystyrene(PS)-

polymethylmethacrylate(PMMA)-polyethylacrylate(PEA). (c) Schematic of the fabrication 

technique using shear-flow self-assembly of polymer particles into 3D cubic lattices at high 

temperatures. (d) Transmission diffraction pattern taken at normal incidence for a ≈ 40 μm 

thick film of an edge-sheared opal with sphere diameter of 630 nm. (e) Green polymer opal 

films showing the large enhancement of structural color saturation with the addition of 0.05% 

by weight of carbon nanoparticles. (f) Dark-field spectra of polymer-opal films show 

improving order with edge shearing. Data are normalized to a reference Lambertian scatterer. 

The insets show a photo of an edge-sheared polymer-opal film (≈ 6×2 cm, left), and edge-

induced rotational shear processing of core-shell nanospheres between rigid PET tapes 

(right). 

  



12 
 

 

Figure 2; (a) Illustration of the striking iridescence of red, green and blue polymer opal thin-

films. Core particle sizes range from ~300 nm (red) to ~200 nm (blue). (b) A polymer opal 

mounted onto a Lycra fabric, illustrating the stretch-, bend-, and twist-tunability. (c) Post-

extruded long fibers of opaline quality. (d) Images of the change in an iso-refractive opal 

structure as the temperature is raised, illustrating a clear thermochromic effect. 
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Figure 3; (a) Intensity pattern of scattered light from a polymer opal at various wavelengths, 

as projected onto a hemispherical screen, showing highly anisotropic scattering (images use a 

high dynamic range false color scale as indicated). The small black spot in the center is the 

intense specular reflection; the hole through which white-light is introduced is seen on the 

left. (b) Normal incidence reflectance peak heights plotted as a function of index contrast, n, 

with linear fits to both experimental data and a 1D multilayer quasi-model. In the model, 

layers had an inbuilt disorder of 7% of the interlayer thickness. The inset shows the samples 

(widths of ~3cm) as viewed in transmitted white light, with the index contrast increasing 

from left to right. 
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Caption; Synthetic opals, based on self-assembled arrays of core-shell polymer composite 

microparticles, are a promising platform for next generation bulk-scale photonic structures, 

coatings and sensors. Additionally, such medium contrast photonic crystals are of importance 

for a more fundamental understanding of the phenomenon of structural color. 


