10,288 research outputs found
Experimental assessment of the speed of light perturbation in free-fall absolute gravimeters
Precision absolute gravity measurements are growing in importance, especially
in the context of the new definition of the kilogram. For the case of free-fall
absolute gravimeters with a Michelson-type interferometer tracking the position
of a free falling body, one of the effects that needs to be taken into account
is the speed of light perturbation due to the finite speed of propagation of
light. This effect has been extensively discussed in the past, and there is at
present a disagreement between different studies. In this work, we present the
analysis of new data and confirm the result expected from the theoretical
analysis applied nowadays in free-fall gravimeters. We also review the standard
derivations of this effect (by using phase shift or Doppler effect arguments)
and show their equivalence
Electrical characterization of a Mapham inverter using pulse testing techniques
Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems
Electrical properties of teflon and ceramic capacitors at high temperatures
Space power systems and components are often required to operate efficiently and reliably in harsh environments where stresses, such as high temperature, are encountered. These systems must, therefore, withstand exposure to high temperature while still providing good electrical and other functional properties. Experiments were carried out to evaluate Teflon and ceramic capacitors for potential use in high temperature applications. The capacitors were characterized in terms of their capacitance and dielectric loss as a function of temperature, up to 200 C. At a given temperature, these properties were obtained in a frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed in a temperature range from 25 to 200 C. The results obtained are discussed and conclusions are made concerning the suitability of the capacitors studied for high temperature applications
Electrical characterization of glass, teflon, and tantalum capacitors at high temperatures
Dielectric materials and electrical components and devices employed in radiation fields and the space environment are often exposed to elevated temperatures among other things. Therefore, these systems must withstand the high temperature exposure while still providing good electrical and other functional properties. Experiments were carried out to evaluate glass, teflon, and tantalum capacitors for potential use in high temperature applications. The capacitors were characterized in terms of their capacitance and dielectric loss as a function of temperature up to 200 C. At a given temperature, these properties were obtained in a frequency range of 50 Hz to 100 kHz. The DC leakage current measurements were also performed in a temperature range from 20 to 200 C. The obtained results are discussed and conclusions are made concerning the suitability of the capacitors investigated for high temperature applications
Nonsupersymmetric brane vacua in stabilized compactifications
We derive the equations for the nonsupersymmetric vacua of D3-branes in the
presence of nonperturbative moduli stabilization in type IIB flux
compactifications, and solve and analyze them in the case of two particular
7-brane embeddings at the bottom of the warped deformed conifold. In the limit
of large volume and long throat, we obtain vacua by imposing a constraint on
the 7-brane embedding. These vacua fill out continuous spaces of higher
dimension than the corresponding supersymmetric vacua, and have negative
effective cosmological constant. Perturbative stability of these vacua is
possible but not generic. Finally, we argue that anti-D3-branes at the tip of
the conifold share the same vacua as D3-branes.Comment: 17 pages, 1 figure, LaTeX. v2: references added, typo fixed. v3:
version appearing in JHE
On the predictive power of Local Scale Invariance
Local Scale Invariance (LSI) is a theory for anisotropic critical phenomena
designed in the spirit of conformal invariance. For a given representation of
its generators it makes non-trivial predictions about the form of universal
scaling functions. In the past decade several representations have been
identified and the corresponding predictions were confirmed for various
anisotropic critical systems. Such tests are usually based on a comparison of
two-point quantities such as autocorrelation and response functions. The
present work highlights a potential problem of the theory in the sense that it
may predict any type of two-point function. More specifically, it is argued
that for a given two-point correlator it is possible to construct a
representation of the generators which exactly reproduces this particular
correlator. This observation calls for a critical examination of the predictive
content of the theory.Comment: 17 pages, 2 eps figure
Residual entropy in a model for the unfolding of single polymer chains
We study the unfolding of a single polymer chain due to an external force. We
use a simplified model which allows to perform all calculations in closed form
without assuming a Boltzmann-Gibbs form for the equilibrium distribution.
Temperature is then defined by calculating the Legendre transform of the
entropy under certain constraints. The application of the model is limited to
flexible polymers. It exhibits a gradual transition from compact globule to
rod. The boundary line between these two phases shows reentrant behavior. This
behavior is explained by the presence of residual entropy.Comment: 5 pages, 4 figures, extended version of arXiv:cond-mat/061225
Desensitizing Inflation from the Planck Scale
A new mechanism to control Planck-scale corrections to the inflationary eta
parameter is proposed. A common approach to the eta problem is to impose a
shift symmetry on the inflaton field. However, this symmetry has to remain
unbroken by Planck-scale effects, which is a rather strong requirement on
possible ultraviolet completions of the theory. In this paper, we show that the
breaking of the shift symmetry by Planck-scale corrections can be
systematically suppressed if the inflaton field interacts with a conformal
sector. The inflaton then receives an anomalous dimension in the conformal
field theory, which leads to sequestering of all dangerous high-energy
corrections. We analyze a number of models where the mechanism can be seen in
action. In our most detailed example we compute the exact anomalous dimensions
via a-maximization and show that the eta problem can be solved using only
weakly-coupled physics.Comment: 34 pages, 3 figures
D3-brane Potentials from Fluxes in AdS/CFT
We give a comprehensive treatment of the scalar potential for a D3-brane in a
warped conifold region of a compactification with stabilized moduli. By
studying general ultraviolet perturbations in supergravity, we systematically
incorporate `compactification effects' sourced by supersymmetry breaking in the
compact space. Significant contributions to the D3-brane potential, including
the leading term in the infrared, arise from imaginary anti-self-dual (IASD)
fluxes. For an arbitrary Calabi-Yau cone, we determine the most general IASD
fluxes in terms of scalar harmonics, then compute the resulting D3-brane
potential. Specializing to the conifold, we identify the operator dual to each
mode of flux, and for chiral operators we confirm that the potential computed
in the gauge theory matches the gravity result. The effects of four-dimensional
curvature, including the leading D3-brane mass term, arise directly from the
ten-dimensional equations of motion. Furthermore, we show that gaugino
condensation on D7-branes provides a local source for IASD flux. This flux
precisely encodes the nonperturbative contributions to the D3-brane potential,
yielding a promising ten-dimensional representation of four-dimensional
nonperturbative effects. Our result encompasses all significant contributions
to the D3-brane potential discussed in the literature, and does so in the
single coherent framework of ten-dimensional supergravity. Moreover, we
identify new terms with irrational scaling dimensions that were inaccessible in
prior works. By decoupling gravity in a noncompact configuration, then
systematically reincorporating compactification effects as ultraviolet
perturbations, we have provided an approach in which Planck-suppressed
contributions to the D3-brane effective action can be computed.Comment: 70 page
- …