636 research outputs found

    Gravitational Topological Quantum Field Theory Versus N = 2 D = 8 Supergravity and its lift to N = 1 D = 11 Supergravity

    Get PDF
    In a previous work, it was shown that the 8-dimensional topological quantum field theory for a metric and a Kalb-Ramond 2-form gauge field determines N = 1 D = 8 supergravity. It is shown here that, the combination of this TQFT with that of a 3-form determines N = 2 D = 8 supergravity, that is, an untruncated dimensional reduction of N = 1 D = 11 supergravity. Our construction holds for 8-dimensional manifolds with Spin(7) \subset SO(8) holonomy. We suggest that the origin of local Poincare supersymmetry is the gravitational topological symmetry. We indicate a mechanism for the lift of the TQFT in higher dimensions, which generates Chern-Simons couplings.Comment: one section has been adde

    Extended BRST invariance in topological Yang Mills theory revisited

    Get PDF
    Extended BRST invariance (BRST plus anti-BRST invariances) provides in principle a natural way of introducing the complete gauge fixing structure associated to a gauge field theory in the minimum representation of the algebra. However, as it happens in topological Yang Mills theory, not all gauge fixings can be obtained from a symmetrical extended BRST algebra, where antighosts belong to the same representation of the Lorentz group of the corresponding ghosts. We show here that, at non interacting level, a simple field redefinition makes it possible to start with an extended BRST algebra with symmetric ghost antighost spectrum and arrive at the gauge fixing action of topological Yang Mills theory.Comment: Interaction terms heve been included in all the calculations. Two references added. Version to be published in Phys. Rev. D. 7 pages, Latex, no figure

    Symmetries of topological field theories in the BV-framework

    Get PDF
    Topological field theories of Schwarz-type generally admit symmetries whose algebra does not close off-shell, e.g. the basic symmetries of BF models or vector supersymmetry of the gauge-fixed action for Chern-Simons theory (this symmetry being at the origin of the perturbative finiteness of the theory). We present a detailed discussion of all these symmetries within the algebraic approach to the Batalin-Vilkovisky formalism. Moreover, we discuss the general algebraic construction of topological models of both Schwarz- and Witten-type.Comment: 30 page

    Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region

    Full text link
    We prove the renormalizability of a quark-gluon model with a soft breaking of the BRST symmetry, which accounts for the modification of the large distance behavior of the quark and gluon correlation functions. The proof is valid to all orders of perturbation theory, by making use of softly broken Ward identities.Comment: 20 pages, no figures. Preprint number added in v2

    Violation of the phase space general covariance as a diffeomorphism anomaly in quantum mechanics

    Full text link
    We consider a topological quantum mechanics described by a phase space path integral and study the 1-dimensional analog for the path integral representation of the Kontsevich formula. We see that the naive bosonic integral possesses divergences, that it is even naively non-invariant and thus is ill-defined. We then consider a super-extension of the theory which eliminates the divergences and makes the theory naively invariant. This super-extension is equivalent to the correct choice of measure and was discussed in the literature. We then investigate the behavior of this extended theory under diffeomorphisms of the extended phase space and despite of its naive invariance find out that the theory possesses anomaly under nonlinear diffeomorphisms. We localize the origin of the anomaly and calculate the lowest nontrivial anomalous contribution.Comment: 36 page

    Observables in Topological Yang-Mills Theories

    Full text link
    Using topological Yang-Mills theory as example, we discuss the definition and determination of observables in topological field theories (of Witten-type) within the superspace formulation proposed by Horne. This approach to the equivariant cohomology leads to a set of bi-descent equations involving the BRST and supersymmetry operators as well as the exterior derivative. This allows us to determine superspace expressions for all observables, and thereby to recover the Donaldson-Witten polynomials when choosing a Wess-Zumino-type gauge.Comment: 39 pages, Late

    Non-perturbative Landau gauge and infrared critical exponents in QCD

    Get PDF
    We discuss Faddeev-Popov quantization at the non-perturbative level and show that Gribov's prescription of cutting off the functional integral at the Gribov horizon does not change the Schwinger-Dyson equations, but rather resolves an ambiguity in the solution of these equations. We note that Gribov's prescription is not exact, and we therefore turn to the method of stochastic quantization in its time-independent formulation, and recall the proof that it is correct at the non-perturbative level. The non-perturbative Landau gauge is derived as a limiting case, and it is found that it yields the Faddeev-Popov method in Landau gauge with a cut-off at the Gribov horizon, plus a novel term that corrects for over-counting of Gribov copies inside the Gribov horizon. Non-perturbative but truncated coupled Schwinger-Dyson equations for the gluon and ghost propagators D(k)D(k) and G(k)G(k) in Landau gauge are solved asymptotically in the infrared region. The infrared critical exponents or anomalous dimensions, defined by D(k)1/(k2)1+aDD(k) \sim 1/(k^2)^{1 + a_D} and G(k)1/(k2)1+aGG(k) \sim 1/(k^2)^{1 + a_G} are obtained in space-time dimensions d=2,3,4d = 2, 3, 4. Two possible solutions are obtained with the values, in d=4d = 4 dimensions, aG=1,aD=2a_G = 1, a_D = -2, or aG=[93(1201)1/2]/980.595353,aD=2aG a_G = [93 - (1201)^{1/2}]/98 \approx 0.595353, a_D = - 2a_G.Comment: 26 pages. Modified 2.25.02 to update references and to clarify Introduction and Conclusio

    Superspace formulation of general massive gauge theories and geometric interpretation of mass-dependent BRST symmetries

    Get PDF
    A superspace formulation is proposed for the osp(1,2)-covariant Lagrangian quantization of general massive gauge theories. The superalgebra os0(1,2) is considered as subalgebra of sl(1,2); the latter may be considered as the algebra of generators of the conformal group in a superspace with two anticommuting coordinates. The mass-dependent (anti)BRST symmetries of proper solutions of the quantum master equations in the osp(1,2)-covariant formalism are realized in that superspace as invariance under translations combined with mass-dependent special conformal transformations. The Sp(2) symmetry - in particular the ghost number conservation - and the "new ghost number" conservation are realized as invariance under symplectic rotations and dilatations, respectively. The transformations of the gauge fields - and of the full set of necessarily required (anti)ghost and auxiliary fields - under the superalgebra sl(1,2) are determined both for irreducible and first-stage reducible theories with closed gauge algebra.Comment: 35 pages, AMSTEX, precision of reference

    Mirror symmetry in two steps: A-I-B

    Full text link
    We suggest an interpretation of mirror symmetry for toric varieties via an equivalence of two conformal field theories. The first theory is the twisted sigma model of a toric variety in the infinite volume limit (the A-model). The second theory is an intermediate model, which we call the I-model. The equivalence between the A-model and the I-model is achieved by realizing the former as a deformation of a linear sigma model with a complex torus as the target and then applying to it a version of the T-duality. On the other hand, the I-model is closely related to the twisted Landau-Ginzburg model (the B-model) that is mirror dual to the A-model. Thus, the mirror symmetry is realized in two steps, via the I-model. In particular, we obtain a natural interpretation of the superpotential of the Landau-Ginzburg model as the sum of terms corresponding to the components of a divisor in the toric variety. We also relate the cohomology of the supercharges of the I-model to the chiral de Rham complex and the quantum cohomology of the underlying toric variety.Comment: 50 pages; revised versio
    corecore