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1 Introduction

Poincaré supersymmetry and topological supersymmetry are deeply related
on manifolds with special holonomies. This was observed in [1] and [2], where
the 8-dimensional Yang–Mills topological quantum field theory (TQFT) was
constructed. [1] also suggested that the introduction of a TQFT for a 3-form
in eight dimensions is of relevance, for a better understanding of supergravi-
ties and for determining effective actions for the M theory.

[3] indicated the existence of a formal link between topological sigma-
models and all anomaly-free superstrings. For us, it was a signal that the
origin of local Poincaré supersymmetry might be the gravitational topologi-
cal symmetry. This raises the question whether D = 11 supergravity, which
determines all known supergravities in lower dimensions as limits of super-
strings, can be constructed in the context of a TQFT. Eventually, there is
the possibility that there is a unique topological symmetry that can be repre-
sented in two possible phases, one which is purely topological and the other
one which describes particles.

To concretely understand how supergravity can be deduced from topo-
logical gravity is not a trivial task. We first demonstrated that topological
gravities in four and eight dimensions can be respectively untwisted into
N = 2 D = 4 supergravity [4] and a truncated version of N = 1 D = 8
supergravity [5]. Then, we proved that the TQFT of a general tensor of
rank two in eight dimensions, which is made of the symmetric metric and
the Kalb–Ramond 2-form, determines in a twisted way the complete N = 1
D = 8 supergravity [6]. Introducing a TQFT for the 2-form in [6] has greatly
clarified questions opened in our earlier work that were related to the inter-
pretation of graviphotons and of Lorentz invariance. In all these cases, the
result is that the TQFT can be identified with an Euclidean supergravity,
around the solution of a gravitational instanton. The oversimplified case
of N = 1 D = 2 supergravity was analyzed in [7]. Moreover, a geometrical
insight on topological 2-dimensional gravitational invariance was given in [8].

We basically found in all these works that the gravitino is a topological
ghost for the reparametrization symmetry, up to twist. This is an appeal-
ing feature, since the gravitino can then be identified as a curvature (in an
enlarged space) and not as a connection. Moreover, we find that local su-
persymmetry is a ghost of ghost symmetry rather than a gauge symmetry.
This changing point of view eliminates many of the puzzling questions that
are related to the elusive construction of a gauge group for the Poincaré
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local supersymmetry. As a matter of fact, all elements of supergravity multi-
plets acquire robust geometrical definitions within the context of topological
gravity coupled to TQFTs of forms.

In this paper, we reach our earlier goal, which was to show that the field
spectrum of N = 1 D = 11 supergravity can be determined in the context
of a 8-dimensional gravitational TQFT.

Using a freedom in the ghost sector of the Kalb–Ramond 2-form, which
we had not exploited in [6], we enlarge the ghost of ghost symmetry of the
twisted N = 1 D = 8 supergravity. This suggests adding new degrees of
freedom. The very natural idea is to introduce a TQFT for a 3-form and to
couple it to the TQFT of [6]. A second gravitino emerges, which is made
of some of the topological ghosts of the 3-form. Remarkably, the resulting
theory turns out to be N = 2 D = 8 supergravity, whose classical content
is made of the metric, a 3-form, three 2-forms, seven scalars, two gravitinos
and six Majorana spinors. This is nothing but an untruncated dimensional
reduction of the spectrum N = 1 D = 11 supergravity, in a twisted form.

Our construction holds for 8-dimensional manifolds with Spin(7) ⊂ SO(8)
holonomy. (We could as well choose a smaller holonomy group, for instance
G2.) In fact, one covariantly constant spinor ǫ is needed in order to relate
forms and spinors by “twist”. It also allows one to construct self-duality
equations, which are generally invariant only under the action of the holon-
omy group. Strictly speaking, we must thus think of a link between the
gravitational TQFT and the supergravity theory that we expand around a
gravitational instanton. The “twist” operation is what changes the fermions
of the TQFT, which exactly balance all contributions of bosons, modulo zero
modes, into fermions, which satisfy the physical spin–statistic relation and
can be interpreted as particles.

After untwisting, we recover the full Lorentz invariance. Indeed, when
we perform the untwisting from the TQFT toward supergravity, the explicit
dependence of the TQFT on ǫ is absorbed in the change of variables that
maps forms on spinors. Then, we get the supergravity action in its SO(8)
invariant form.

An intriguing question is whether the covariantly constant spinor, which
makes the twist possible, has a physical origin, for instance, as an expectation
value of some field. In the presence of a brane, a form may exist in higher
dimensions with a constant flux ̞ through a hypersurface, which can generate
the constant spinor ǫ, by relations like tǫ˼a . . . ˼c ǫ = ̞a...c. Other possibilities
exist.
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The paper is organized as follows. The next section is devoted to string
theory arguments, which further indicate that the determination of the com-
plete spectrum of the maximal supergravity in the context of gravitational
gravity is probably not coincidental. Section 3 details our precise arguments,
which show the relationship between the 8-dimensional gravitational TQFT
for a metric, a 2-form and a 3-form and N = 2 D = 8 supergravity. Section
4 sketches an argument that new TQFTs seem to exist in eight and seven
dimensions, which involve as dynamical fields a twisted gravitino and forms,
but not a metric. Section 5 shows a mechanism for lifting the theory in higher
dimensions and generating Chern–Simons terms.

2 String theory argument

Superstring theory induces gravity, and is explicitly reparametrization in-
variant in target-space. The way target-space supersymmetry, and thus su-
pergravity, emerges is less direct. Superconformal invariance on the world-
sheet selects vertex operators that describe the gravitino in the quantum
field theory limit. Eventually, one discovers target-space supersymmetry as
a symmetry transformation between the graviton and the gravitino. The lo-
cal supersymmetry transformations are given in an infinitesimal form. They
build an open algebra that closes only modulo equations of motions, which
makes their geometrical interpretation quite obscure.

Our suggestion is that the algebra of supergravity transformations does’nt
correspond to a gauge symmetry group. It is basically supported by the
observation that the gravitino is a curvature rather than a gauge field, since it
can be defined as a combination of untwisted gravitational topological ghosts.
The latter are actually defined from the action of exterior operators upon
fields with status of connections. The whole gravitational TQFT construction
suppresses well known difficulties that occur in all attempts at building a
group out of infinitesimal supersymmetry transformations of supergravity

The idea that supergravity can be deduced from topological gravity is
heuristically supported by the following world-sheet argument, in the NSR
formalism. The string coordinate Xµ has world-sheet supersymmetric part-
ners ̑µ and ¯̑µ, where ̅ labels the world index of target-space. Once a
conformal structure has been chosen for the world-sheet of the string, both
generators Q and Q̄ of world-sheet supersymmetry determine a world-sheet
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spinor, with:

QXµ = ̑µ + . . . , Q̄Xµ = ¯̑µ + . . . (1)

The world-sheet spinor (̑µ, ¯̑µ) has the physical spin–statistic relation on
the world-sheet, but the unphysical one in target-space. Formally, Eq. (1)
suggests that the induced metric gµν of the target-space quantum field theory
limit has a symmetry of the type:

Qgµν = ̑µν + . . . (2)

The field ̑µν clearly looks as a target-space topological ghost. Its spin–
statistic relation is unphysical, so that it contributes negatively to the energy,
with contributions that are opposite to those of the metric. Our present
understanding of TQFTs suggests to us that the symmetry in Eq. (2) must
lead us to a quantum field theory limit that is topological gravity in target-
space. Only indirectly can it lead us to supergravity, provided forms can be
mapped on spinors in the manifold, and fermions can be extracted with the
physical spin–statistic.

As emphasized above, ̑µν has indeed a precise interpretation in target-
space. As a topological ghost for the topological symmetry that is associated
to the reparametrization group, ̑µν is the component of a curvature in the
enlarged space that unifies the form-grading of fields and their ghost number.
By no mean, can ̑µν be interpreted as a connection. In the topological
BRST framework, ̑µν transforms under a ghost of ghost symmetry. The
Faddeev–Popov spinor ghost for local supersymmetry will be obtained by
untwisting the ghosts of ghosts. However, it is not expected that ghosts
of ghosts correspond to “infinitesimal” anticommuting spinors, which would
eventually be usable for giving a group structure by integration.

The proposed idea is so general, that it should apply to all known su-
pergravities, and thus, to their essential parent, which is N = 1 D = 11
supergravity. And, indeed, after having achieved the details of the construc-
tion of the TQFT for a metric, a 2-form and a 3-form in 8 dimensions, we
will have the desired identification between a topological BRST algebra and
the infinitesimal symmetries of N = 2 D = 8 supergravity, which is an ex-
pression of the N = 1 D = 11 supergravity. It is striking that, in this way, all
ingredients of supergravity will be described from geometrical considerations
in the space of field configurations of a metric, a 2-form and a 3-form in 8
dimensions.
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Another motivation for the description of supergravity as a gravitational
TQFT is that Eq. (1) also indicates that the superstring theory can be twisted
in a topological sigma-model. The operators Q and Q̄ can be identified as
BRST and anti-BRST operators for the topological sigma-model by shifting
to zero value the conformal weight of the superstring fields ̑µ and ¯̑µ, and
by doing a compensating twist that transforms the world-sheet N = 1 super-
gravity into 2-dimensional topological gravity, which ensures the conformal
anomaly-free condition. Formally, the twist is a mere change of variables as
for instance indicated in [3][7]. For a topological sigma-model, the depen-
dence on the target-space local properties becomes very loose. This suggests
to us that its quantum field theory limit is topological gravity instead of su-
pergravity. For consistency, however, we must be able to recover supergravity
from topological gravity directly, which is what we will achieve in this paper.

The proposal that the local details of target-space become a secondary
notion is reinforced by observations presented in [3]. There, we have shown
that, for a genuine world-sheet theory, i.e, a pure 2d-surface theory without
matter, but with a rich enough 2-dimensional gravitational structure for en-
forcing the absence of a conformal anomaly, one can extract target-space co-
ordinates from the world-sheet structure. Indeed, if we take 2d-supergravity
with supersymmetry of rank larger than four, the sum of the contributions
of all its ghosts to the conformal anomaly vanishes and it is thus inconsis-
tent to introduce matter under the form of external string coordinates. The
latter would generate an anomaly. On the other hand, we have shown that
we can perform various twists of the 2d-ghosts, while keeping the confor-
mal anomaly equal to zero and recover all possible superstring theories, with
N < 4 worldsheeet supersymmetry, combined with decoupled TQFTs [3].
In this presentation, the physical string coordinates, i.e, the coordinates of
the effective target-space, appear as bound states of the additional ghosts
that are initially introduced for describing the extended supersymmetry on
the world-sheet. The superstring coordinates are defined in an analogous
way. An alternative scheme is to replace the 2d-supergravity of rank N by
the topological WN gravity, with the interesting limiting case of W∞ grav-
ity, which has a Lie algebra structure. Eventually, the vertex operators that
describe the fields of the limiting supergravity theory are composites of 2-
dimensional ghost fields that arise from a pure two-dimensional geometrical
structure, with no early reference to a target-space.

These intriguing observations have been the support of our idea that
supersymmetry in target-space is more of a topological origin than is usually
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expected. The next section is to show in detail how the maximal supergravity
is actually related to a topological model of the Donaldson–Witten type [9].

3 Determination of the spectrum of N=2 D=8

supergravity

3.1 The TQFT for N=1 D=8 supergravity

In [6], we have constructed the TQFT for a tensor of rank 2 for manifolds
with Spin(7) holonomy. We obtained that the BRST topological multiplet
is essentially:

ea
µ, Bµν , ̌, A(2)

µ , A(−2)
µ , (Ψ(1)a

µ , Ψ̄(−1)ab−

µ , Ψ̄(−1)
µ ), ( ¯̐(−1)

µ , Ψ
(1)
µν− , ̐(1)) (3)

This is nothing but the spectrum of N = 1 D = 8 supergravity, up to a
twist, which is enabled by the existence of a covariantly constant spinor in
the manifold.

In more detail, we constructed in [6] a TQFT for the vielbein ea
µ, the

spin connection ̒ab
µ and the Kalb–Ramond 2-form Bµν . We found that the

topological BRST multiplets for these fields can be expressed as follows:

ea
µ

ւ
Ψ(1)a

µ (Ψ̄(−1)ab−

µ , ¯̐(−1)
µ )

ւ ւ
Φ(2)a ̌, Φ(0)ab− , (b(0)ab−

µ , b(0)
µ ) Φ̄(−2)a

ւ ւ
̐(1), ̀(1)ab− ¯̀(−1)a

(4)

̒ab
µ

ւ
Ψ̃(1)ab

µ
¯̃Ψ

(−1)ab

µ

ւ ւ
Φ̃(2)ab Φ̃(0)ab− , b̃(0)ab−

µ
¯̃Φ

(−2)ab+

ւ
¯̀̃(−1)ab+

(5)
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Bµν

ւ
Ψ(1)

µν Ψ̄
(−1)
µν−

ւ ւ
A(2)

µ (A(0), A
(0)
µν−) , b

(0)
µν− A(−2)

µ

ւ ւ ւ
R(3) S(1), (Ψ

(1)
µν− , Ψ(1)) S̄(−1), Ψ̄(−1)

µ R̄(−3)

ւ ւ ւ
b
(2)

S(1) b
(0)

S̄(−1) b
(−2)

R̄(−3)

(6)

To gain control on the gauge invariance of the graviphoton A(−2)
µ , we need

a BRST quartet that includes an Abelian ghost d(−1) . We thus extend the
pair (A(−2)

µ , Ψ(−1)
µ ) in Eq.(6) as follows 1:

A(−2)
µ ջ֒

ւ
Ψ̄(−1)

µ

A(−2)
µ

ւ
Ψ̄(−1)

µ , d(−1)

ւ
Φ(0) Φ̄(0)

ւ
¯̀(1)

(7)

We also have the usual ghost systems for the reparametrization and
Lorentz invariances:

̇µ ¯̇µ

ւ
bµ

Ωab Ω̄ab

ւ
bab

(8)

In these equations, some 2-forms have been decomposed in a Spin(7)
invariant way as Xµν = Xµν− + Xµν+ , where Xµν− and Xµν+ are self-dual
and antiself-dual projections of Xµν , with dimensions 7 and 21 respectively,
according to 28 = 7 ⊕ 21. We have slightly improved our general notation

1The BRST symmetry for this U(1) invariance is expressed by:

sA
(−2)
µ = Ψ̄

(−1)
µ + ∂µd(−1), sΨ̄

(−1)
µ = −∂µΦ(0), sd(−1) = Φ(0), sΦ(0) = 0, sΦ(0) = η̄(1),

sη̄(1) = 0.
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of [6] by adding southwest arrows, which indicate which fields are related by
topological BRST transformations.

For each field, the upper index in parenthesis indicates the ghost number.
The fields that are not on the left edge of each pyramid come into topological
pairs that are made of a commuting or an anticommuting antighost ḡ with its
Lagrange multiplier ̄ of the opposite statistics. They satisfy BRST equations
that can be basically written as sḡ(g) = ̄(g+1), s̄(g+1) = 0, i.e, that are
of a trivial type. These BRST equations can be improved in a way that
expresses the reparametrization symmetry and the symmetries of forms in
an equivariant way.

The fields that carry the essential geometrical information are on the left
edge of each pyramid. We refer to [6], where the explicit BRST transforma-
tions of all above fields have been displayed in great details.

All topological BRST equations actually derive from geometrical equa-
tions on extended curvatures, which are of the following type:

(s + d)(Bµνdxµ ∧ dxν + V (1)
µ dxµ + m(2))

= exp iξ
(

dB2 + Ψ(1)
µν dxµ ∧ dxν + A(2)

µ dxµ + R(3)
)

(9)

The operator exp iξ generically takes into account the reparametrization sym-
metry.

The expansion in ghost number of Eq.(9) and of its Bianchi identity
defines the BRST symmetry. Eq.(9) also shows that the topological ghosts
and ghosts of ghosts, which appear in its right hand-side, are components
of a curvature. This turns out to be the important observation in view of a
geometrical interpretation of the gravitino as curvature and not as a gauge
field for a gauge symmetry. This interpretation generalizes to the antighost
sector, and is allowed by the existence of a tri-grading, made of the ordinary
form degree, the ghost number and the antighost number

It was found in [6] that the expression of the topological gravity action
is:

∫

M8

L =
∫

M8

s
[

Ψ̄(−1)ac−(b(0)cb− + ̒cb−(e) − Gcb−

d ed)Vab

+¯̐(−1)a
(

b(0)
a + ∂ǎ + ΩabcdGbcd

)]

+s
[

∂[µA
(−2)
ν]− (Ψ

(1)a
[µ ea

ν] + Ψ(1)
µν )

]

s
[

eµ
c e

ν
d

¯̃Φ
(−2)cd+

(Ψ(1)
µν − Ψ

(1)a
[µ ea

ν])
]

, (10)
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where Va1...ai
≡ 1

(8−i)!
ǫa1...a8e

a(i+1) . . . ea8 . This topological action gives kinetic
terms for the graviton, the gravitino, the 2-form Bµν , both two graviphotons
A�2

µ and the dilaton and dilatino of the of N = 1 D = 8 supergravity,
around an octonionic gravitational instanton and a given configuration of
the dilaton. It was emphasized in [6] that, by suitable deformations of the
topological gauge functions, it is possible to reproduce the exact supergravity
action.

To gauge-fix the local supersymmetry, which emerges as an invariance of
the topological ghosts in the action (10), we added in [6] the following s-exact
action:

∫

M8

s
[√

g(Φ̄(−2)aDµΨ(1)a
µ + Φ(0)ab−DµΨ̄(−1)ab−

µ + Φ̄(0)∂µΨ̄(−1)
µ )

]

(11)

This expression is quite instructive to us. It allows us to respectively identify
(Φ(2)a, Φ(0)ab−, Φ(0)), (Φ̄(−2)a, Φ̃(0)ab−, Φ̄(0)) and (¯̀(−1)a, ̀(1)ab− , ̀(1)) as twisted
versions of the Faddeev–Popov spinor ghost and antighost for local N=1
supersymmetry, and of the fermionic Lagrange multipliers for the gauge-
fixing of the gravitino, with a gauge function (˼µ∂µ)˼ν̄ν .

The gauge-fixing of both graviphotons A�2
µ was obtained from:

∫

M8

s(S1∂µA
−2
µ + R−3∂µA

2
µ). (12)

Thus, (d1, S−1) and (R−3, R3) can be identified as the Faddeev–Popov ghosts
and antighosts for the U(1) invariances of both graviphotons.

The mapping between the fermionic degrees of freedom between the
fermionic sector of the TQFT and of D=8, N=1 supergravity uses the co-
variantly constant spinor ˾ of the manifold with Spin(7) holonomy. Call
respectively (̄, ¯̄) and (̐, ¯̐) the chiral and antichiral parts of the gravitino
and dilatino. Their relation with the topological ghosts of the TQFT was
found to be 2:

̄ = Ψa˼a˾ ,

¯̄ = Ψ̄˾ + Ψ̄ab−˼ab˾ ,

̐ = ¯̐a˼a˾ ,

¯̐ = ̐˾ + ̐ab−˼ab˾ . (13)

2The 8-dimensional gamma matrices γa act on spinors of definite chirality. We have

defined χµν− = Ψ
(1)
µν−

− Ψ
(1)a
[µ ea

ν]− and χab− = eµ
aeν

b χµν [6].
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3.2 Completion of the spectrum of N=1 D=8 super-

gravity by the TQFT of a 3-form

The previous section section was for recalling the link between N = 1 D = 8
supergravity and a TQFT that involves the fields in Eq. (3). We now show the
novel result that the construction of a TQFT for a 3-form and its coupling to
the TQFT that we have just written, determines N = 2 D = 8 supergravity.

In order to reach the N = 1 D = 8 supergravity, we have set to zero in
a BRST invariant way the fields A

(0)
µν− and A(0), which appear in the TQFT

multiplet in Eq. (6). We used a term s
[

Ψ̄
(−1)
µν− A

(0)
µν− + S̄(−1)A(0)

]

[6]. Here, we
will use our freedom of possibly defining a propagation for these fields, by a
change of the topological gauge functions, and reach eventually the N = 2
D = 8 supergravity.

We thus go back to the situation where the degrees of freedom in A
(0)
µν−

and A(0) are arranged as the elements of a vector ghost of ghost A(0)
µ . The

latter will be interpreted shortly as the twisted expression of the chiral part
of a commuting spinor, which turns out to be the Faddeev–Popov antighost
for the second generator of N=2 supersymmetry. This suggests that we need
new fields, for representing this symmetry. The natural idea is to introduce
a 3-form gauge field Cµνρ, together with its topological multiplet, and to
complete the N=1 theory into the N=2 theory, by addition of a TQFT for
the 3-form.

We now must find the way to write the BRST multiplet for a 3-form.
Following the notation that is analogous to that we have used for the BRST
multiplet of the 2-form Bµν , the BRST multiplet of the 3-form Cµνρ is:

Cµνρ

ւ
̑(1)

µνρ
¯̑(−1)
µνρσ+

ւ ւ
B(2)

µν B
(0)
µν− , b

(0)
µνρσ+ B(−2)

µν

ւ ւ ւ
R(3)

µ S(1)
µ , ̑

(1)
µν− S(−1)

µ , ̑(−1)
µν R(−3)

µ

ւ ւ ւ ւ
M (4) N (2), b(2)

µ N (0), b(0)
µ N (−2), b(−2)

µ M (−4)

ւ ւ ւ ւ
̀(3) ̀(1) ̀(−1) ̀(−3)

(14)

The BRST equations for all these fields can be obtained in an analogous
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way as for those the 2-form, with equations as in Eq.(9).
In Eq.(14) the topological antighost of the 3-form has been already iden-

tified as a self-dual 4-form ¯̑
µνρσ+ . This can be accepted as an input. Alter-

natively, we can start from an earlier stage and define the 56 components of
the topological antighost of C3 in a Spin(7)-invariant way as 35⊕ 21. Then,

we can eliminate the 21-component against the component B
(0)
µν+ of the ghost

of ghost B(0)
µν , with a term of the form s( ¯̑(−1)

µν+ B
(0)
µν+). Eventually, this explains

the absence of the forms ¯̑(−1)
µν+ , B

(0)
µν+ , b

(0)
µν+ and ̑

(1)
µν+ among the fields that

we have displayed in the table (14). This reduction is natural, since we basi-

cally need a self-dual Lagrange multiplier 4-form b
(0)
µνρσ+ for determining the

square of the 4-form curvature G4 = dC3 of the 3-form C3, using a standard
self-duality gauge function G4 =∗ G4, and

∫

M8 |G+
4 |2 =

∫

M8(|G4|2 +G4 ∧G4).
As a generalization of what we did for the vector ghost of ghost of the

Kalb–Ramond 2-form, we must introduce the fields that are relevant to gain
control of the gauge invariance of the 2-form ghost of ghost B( −2)

µν . We thus

replace the field Ψ̄(−1)
µν within Eq. (14) by the following more refined set of

fields:

̑(−1)
µν ջ֒ ̑(−1)

µν , R̄(−1)
µ

ւ
Φ(0)

µ Φ̄(0)
µ

ւ
̀(1)

µ

(15)

where

Φ(0)
µ ջ֒ Φ(0)

µ ,m(0)

ւ
c(1) c̄(−1)

ւ
X̄(0)

(16)

Φ̄(0)
µ ջ֒ Φ̄(0)

µ , m̄(0)

ւ
c̄(1) c(−1)

ւ
X(0)

(17)
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̀(1)
µ ջ֒ ̀(1)

µ , ¯̀
(1)
(X)

ւ
X(2) X̄(−2)

ւ
̀

(−1)
(X)

(18)

These substitutions amount to the addition of BRST quartets that count
altogether for zero degrees of freedom, and can be cast in the general frame-
work of unification between form degrees, ghost number and antighost num-
ber. The propagation of these fields will be given shortly, as well as their
interpretation.

Obtaining the second gravitino of the theory from the BRST multiplet of
the 3-form is less intuitive than the first gravitino. As shown in Eq.(13), the
first gravitino is a rather obvious combination of Spin(7) covariant topologi-
cal ghosts of the metric and of the Kalb–Ramond 2-form. Our claim is that
the chiral and antichiral components of the second gravitino are obtained
by untwisting the following sets of forms, which come from the topological
multiplet of the 3-form:

( ¯̑(−1)
µνρσ+ , ̑(−1)

µν , ̀
(−1)
(X) )

(̑(1)
µνρ, ̀

(1)
µ ). (19)

Each one of these combinations has 64 components that are irreducibly
decomposed as 35 ⊕ 21 ⊕ 7 ⊕ 1 under Spin(7) and as 56 ⊕ 8 under SO(8).
By appropriately multiplying these tensors by gamma matrices, and applying
the resulting 8·8 matrices on the covariantly constant spinor ǫ of the Spin(7)
holonomy manifold, one gets chiral and antichiral spinors:

̄′
µ =

(

¯̑(−1)
µνρσ+˼νρσ + ̑(−1)

µν ˼ν + ̀
(−1)
(X) ˼µ

)

ǫ

¯̄′
µ =

(

̑(1)
µνρ˼

νρ + ̀(1)
µ

)

ǫ (20)

These spinors determine a combination of a gauge-fixed gravitino with a
Higgsino. We will be more precise on this decomposition shortly.

We now start to define the Lagrangian of all these fields, in the tree
approximation. Eventually, this will allow for their physical interpretation.
We determine the kinetic energy of the second gravitino of the action by the
sum of the following BRST-exact terms:

∫

s
(

¯̑(−1)
µνρσ+(

1

2
b
(0)
µνρσ+ + ∂[µCνρσ])

)

=
∫ 1

2
|∂[µCνρσ]|2 − ¯̑(−1)

µνρσ+∂[µ̑
(1)
νρσ]

12



∫

s
(

̑(1)
µνρ∂[µB

(−2)
νρ]

)

=
∫

∂[µB
(2)
νρ]∂[µB

(−2)
νρ] − ¯̑(1)

µνρ∂[µ̑
(−1)
νρ]

∫

s
(

̑(−1)
µν ∂[µΦ̄

(0)
ν]

)

=
∫

∂[µΦ
(0)
ν] ∂[µΦ̄

(0)
ν] − ̑(−1)

µν ∂[µ̀
(1)
ν]

∫

s
(

X̄(−2)∂µ̀
(1)
µ

)

=
∫

X̄(−2)∂µ∂µX
(2) − ̀

(−1)
X2 ∂µ̀

(1)
µ (21)

The sum of the fermionic terms is Eqs. (21) gives the Rarita–Schwinger action
for the second gravitino, expressed in a twisted form, and with an algebraic
gauge condition of the type ˼µ̄µ = 0. The compensating Faddeev–Popov
ghost dependent action will be determined shortly.

The bosonic terms that are present in the right-hand sides of Eqs. (21)
also indicate that we are on the right track for determining N = 2 D = 8
supergravity. They provide gauge invariant kinetic energy for two 2-forms,
B(2)

µν and B(−2)
µν , two graviphotons, Φ(0)

µ and Φ̄(0)
µ , and two scalars, X̄(−2) and

X(2).
The dependence on the 3-form C3 is equivariant with respect to the ten-

sor gauge invariance C3 ∼ C2 + dΛ2, so it is only through the curvature dC3.
However, the topological field theory BRST construction provides all nec-
essary fields for gauge-fixing the local symmetries of the topological ghosts
ghosts of ghosts of C3.

We must gauge-fix B(2)
µν and B(−2)

µν , whose classical action has already been
obtained in the second line of Eqs. (21). This is done from the following term:

∫

s
(

S(1)
µ (∂νB

(−2)
µν + ∂µN

(−2)) + R(−3)
µ (∂νB

(2)
µν + ∂µN

(2)) + S(1)
µ b(−2)

µ

)

=
∫

(

∂νB
(−2)
µν ∂ρB

(2)
µρ + N̄ (−2)∂µ∂µN

(2)

+∂[µS
(1)
ν] ∂[µR

(−1)
ν] + S(1)

µ (∂ν̑
(−1)
µν + ∂µ̀

(−1))

+∂[µR
(3)
ν] ∂[µR

(−3)
ν] + R(−3)

µ ∂µ̀
(3)

)

(22)

This expression shows us that the propagators of vectors ghosts must be
gauge-fixed, so we add the further term:

∫

s
(

M̄ (−4)∂µR
(3)
µ + m̄(0)∂µR

(−1)
µ

)

=
∫

(

M̄ (−4)∂µ∂µM
(4) + m̄(0)∂µ∂µm

(0) + m̄(0)∂µΦ(0)
µ

+¯̀(−3)∂µR
(3)
µ + c̄(1)∂µR

(−1)
µ

)

(23)

We now understand that (R(3)
µ , R(−3)

µ ) and (R(−1)
µ , S(1)

µ ) are respectively stan-
dard Faddeev–Popov vector ghosts and antighosts for the covariant gauge-
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fixing of both 2-form gauge fields B(�2)
µν

3. The fields M (�4), N (�2) and

(m(0),m(0)) are the standard ghosts of ghosts of these vector ghosts. Thus,
the sum of both actions in Eqs. (22) and (23) is nothing but the covariant
gauge-fixing Lagrangian for both 2-forms B(�2)

µν in a generalized Feynmann
gauge, including all relevant ghosts for the vector gauge symmetry of 2-forms.
This result shows the efficiency of the TQFT construction when it comes to
encoding all gauge symmetries of the fields.

A remaining task is that of gauge-fixing the Abelian symmetries of Φ̄(0)
µ

and Φ(0)
µ . This is done by writing:

∫

s
(

c̄(−1)∂µΦ(0)
µ + c(−1)∂µΦ̄(0)

µ + c̄(−1)X(0)
)

=
∫

(

c̄(−1)∂µ∂µc
(1) + c(−1)∂µ∂µc̄

(1) + ∂µΦ̄(0)
µ ∂νΦ

(0)
ν

)

(24)

In the last equation, X(0) and X̄(0) have been eliminated by Gaussian inte-
gration. This gives the gauge-fixing action for Φ̄(0)

µ and Φ(0)
µ in the Feynman

gauge. (c̄(1), c(−1)) and (c(1), c̄(−1)) in Eq. (16) are thus identified respectively
as the Fadeev–Popov ghosts and antighosts for the Abelian invariance of Φ̄(0)

µ

and Φ(0)
µ .

The propagation of the fields (B
(0)
µν− , N (0), b(0)

µ , S(−1)
µ , ̑

(1)
µν− , ̀(1)) of the 3-

form TQFT multiplet remains to be defined, which we now do.
The fields (B

(0)
µν− , N (0)) determine up to twist the chiral part of a commut-

ing Majorana spinor, which we will identify as the Faddeev–Popov ghost of
the second generator of local supersymmetry in 8 dimensions. We consider
the action:

∫

s
(

S(−1)
µ (∂νB

(0)
µν− + ∂µN

(0))
)

=
∫

S(−1)
µ (∂ν̑

(1)
µν− + ∂µ̀

(1)) + b(0)
µ (∂νB

(0)
µν− + ∂µN

(0)) (25)

The last term is identified as the ghost part of a Faddeev–Popov action,
for a gauge condition that sets eight components of the second gravitino
equal to zero. These eight components build the chiral part of the spin
one-half component of the second gravitino. We are actually gradually un-
veiling the second local supersymmetry. The first term in Eq. (25) is a Dirac
Lagrangian for the anticommuting Majorana spinor that one obtains by un-
twisting (S(−1)

µ , ̑
(1)
µν− , ̀(1)). This field is one Higgsino of the supergravity.

3We must redefine η
(1)
µ ջ η

(1)
µ + S

(1)
µ to absorb the term S

(1)
µ ∂νψ

(−1)
µν in Eq. (22).

Analogously, we redefine X̄(0) ջ X̄(0) + m̄(0) to absorb the term m̄(0)∂µΦ
(0)
µ .
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The gauge-fixing term of the antichiral part of the second gravitino in-
volves, as already suggested, the fields (A

(0)
µν− , A(0)) ∼ A(0)

µ of the spectrum
of the 2-form B2 in Eq.(4). These fields were set equal to zero in [6], so as to
obtain N = 1 D = 8 supergravity. We now choose another gauge-fixing for
defining the TQFT, and define a propagation for these commuting ghosts,
by means of the action:

∫

s
(

A(0)
µ (∂νΨ

(−1)
µν− + ∂µS̄

(−1))
)

=
∫

Ψ(1)
µ (∂ν̑

(−1)
µν− + ∂µS

(−1)) + A(0)
µ (∂νb

(0)
µν− + ∂µb

(0)) (26)

The last term is indeed the desired Faddeev–Popov term for the antichiral
part of the second supersymmetry. The first term in Eq. (26) is another
twisted Higgsino term. The sum of both second terms in the actions (25)
and (26) determine a complete Faddeev–Popov ghost action for a gauge con-
dition Γµ̄µ = 0, where ̄ stand for the chiral and antichiral ungauged-fixed
components of the second gravitino. We conclude that, in a twisted form,
the Faddeev-Popov ghosts and antighosts for the second component of local
N=2 supersymmetry are:

(b(0)
µ , B

(0)
µν− , N (0))

(A(0)
µ , b

(0)
µν− , b(0)) (27)

Of course, one may feel puzzled by the fact that the TQFT chooses dif-
ferent gauge conditions for the gravitinos of both sectors of N = 2 local
supersymmetry. This is actually explainable, since both gravitinos originate
as topological ghosts of different objects, a 2-form and a 3-form. This inter-
esting inelegance might disappear, if we are able to covariantly formulate our
equations in higher dimensions, perhaps in nine dimensions. In the untwisted
model, it is however possible to readjust the gauge, in such a way that the
symmetry of both supersymmetry sectors is recovered.

As for the number of degrees of freedom in the TQFT, the gauge-fixing
that is revealed by the actions in Eqs. (25) and (26) suggests that only 56
components of each one of the multiplets in Eq. (19) are really part of the
second gravitino.

We are now in the position of more precisely identifying the fields in
Eq. (19). They must be understood as made of the twisted gauge-fixed

second gravitino and of one independent Majorana spinor, (̀(1)
µ , ̑

(−1)
µν− , ̀

(−1)
(X) ).

The latter will be a third Higgsino of the supergravity, according to:

( ¯̑(−1)
µνρσ+ , ̑(−1)

µν , ̀
(−1)
(X) ) ջ ( ¯̑(−1)

µνρσ+ , ̑
(−1)
µν+ ) ⊕ (̑

(−1)
µν− , ̀

(−1)
(X) )
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(̑(1)
µνρ, ̀

(1)
µ ) ջ ̑(1)

µνρ ⊕ ̀(1)
µ (28)

We should now rest and contemplate the field content of the theory that
we have constructed step by step.

The idea was to define a propagation for all fields of the BRST multiplet of
a 3-form, and to complete the TQFT of [6]. The TQFT sector stemming from
a 2-tensor (the metric and the Kalb–Ramond 2-form) yields a propagating
theory for the vielbein, one scalar (the dilaton), the 2-form, two vectors (two
Abelian graviphotons), one Majorana gravitino and one Majorana spinor,
according to:

ea
µ, Bµν ջ

ea
µ, Bµν , ̌, A(2)

µ , A(−2)
µ , (Ψ(1)a

µ , Ψ̄(−1)ab−

µ , Ψ̄(−1)
µ ), ( ¯̐(−1)

µ , Ψ
(1)
µν− , ̐(1))

(29)

The TQFT sector stemming from the 3-form yields a second Majorana
gravitino in a twisted form, two Abelian 2-forms, two vectors, two scalars
and three Majorana spinors, according to:

Cµνρ ջ
Cµνρ, B

(�2)
µν , Φ̄(0)

µ , Φ(0)
µ , X(2), X̄(−2), ( ¯̑(−1)

µνρσ+ , ̑
(−1)
µν+ , ̑(1)

µνρ),

(̀(1)
µ , ̑

(−1)
µν− , ̀

(−1)
(X) ), (S(−1)

µ , ̑
(1)
µν− , ̀(1)), (Ψ(1)

µ , ̑
(−1)
µν− , S(−1))

(30)

The second gravitino is obtained in a gauge of the type ˼µΛµ = 0.
The rest of the fields, which appear in the topological multiplets of the 2-

form and 3-form multiplets, play the role of ordinary Faddeev–Popov ghosts
for gauge-fixing all gauge symmetries of these fields that can be identified as
classical fields of N = 2 D = 8 supergravity. We left aside the gauge-fixing
of the 2-form Bµν and 3-form Cµνρ, for the symmetry C3 ∼ C3 + dc2 and
B2 ∼ B2 + dc1, which is standard in the equivariant construction, as it is
already well understood in the context of the topological Yang–Mills theory.

Putting everything together, we have therefore constructed a theory whose
physical fields are, up to twist, a metric, a 3-form, three 2-forms, four 1-forms,
three scalars, two gravitinos and four Majorana spinors.

This is not yet the complete N = 2 D = 8 supergravity. However, we
left aside the possibility of completing the TQFT multiplet of the 3-form by
topological sets that involve two 1-forms, Φ̄(−2)

µ and Φ(2)
µ , for gaining control

to the possible gauge symmetry of B(0)
µν . The fields Φ̄(2)

µ and Φ̄(−2)
µ play a role

for B(0)
µν that is analogous to that played by Φ̄(0)

µ and Φ(0)
µ for B(−2)

µν
4.

4A dissymmetry occurs however in the TQFT, because the anti-self part B
(0)
µν+ of B

(0)
µν

is set equal to zero, while all components of B
(−2)
µν propagate.
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We introduce Φ̄(−2)
µ and Φ(2)

µ as parts of topological multiplets, whose
components count altogether for zero degree of freedom. Such multiplets
are generically of the form (Aµ, Ψµ, ̀, ̃µν− , ̏, ¯̏). They must be completed
with Faddeev–Popov ghost and antighost and a Lagrange multiplier, (g, ḡ, h).
The TQFT action that encodes the Abelian invariance is

∫

s(̃µν−(Hµν− +
∂[µAν]−)+̀∂µΨµ+ḡ(∂µAµ+h)), which a twisted form of the eight dimensional
supersymmetric Yang–Mills theory [1].

We can therefore incorporate in the topological multiplet of the 3-form,
which is given in Eqs .(14-18), both following topological submultiplets;

Φ(−2)
µ

ւ
̑(−1)

µ , g(−1) ̐
(1)
µν− , ḡ(1)

ւ ւ
̏(0) b

(2)
µν− , h(2) ¯̏(0)

ւ
¯̀(1)

Φ(2)
µ

ւ
̑(3)

µ , g(3) ̐
(−3)
µν− , ḡ(−3)

ւ ւ
̏(4) b

(−2)
µν− , h(−2) ¯̏(−4),

ւ
¯̀(−3)

(31)

The TQFT action of these fields is made of two twisted super Yang–Mills
actions. We add each of them to the TQFT actions that we have already
constructed.

We now face with a theory whose physical field content is made of the
fields in Eq. (29-30), plus two graviphotons, two Higgsinos and four scalars,
which stem from the fields that we just introduced in Eqs.(31). Thus, up to
twist, our gravitational TQFT predicts the following set of fields, which are
defined modulo ordinary gauge invariances:

gµν , Cµνρ, 3Bµν , 6Aµ, 7S, 2̄, 6̐. (32)

The notation is that S, ̄ and ̐ respectively denote scalar fields, Majorana
gravitinos and Higgsinos. This set of fields fields is nothing, but the spectrum
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[10] of N = 2 D = 8 supergravity. The Lagrangians of the TQFT and of
supergravity coincide in the quadratic approximation for the fermions.

All other fields that have occurred in our construction can be understood
as conventional ghosts and Lagrange multipliers for fixing the gauge sym-
metries of the fields in Eq. (32). The way all fields transform under the
TQFT symmetry has been determined from the tri-complex structure that
one associates to the gauge symmetries of gravity coupled to a 2-form and
a 3-form. The expression of the topological BRST transformations can be
reinterpreted to reproduce the symmetries of N = 2 D = 8 supergravity,
including local supersymmetry.

The fields that are displayed in Eq. (32) can also be understood as the
spectrum of N=1, D=11 supergravity. Indeed, the straightforward dimen-
sional reduction of N=1, D=11 supergravity gives:

(gµν , Cµνρ, ̄)D=11 ∼ (gµν , Cµνρ, 3Bµν , 6Aµ, 7S, 2̄, 6̃)D=8 (33)

To conclude this section, let us insist on the following points. As for the
identification of the TQFT action and the supergravity action, our demon-
stration holds at the quadratic level for the fermions. Suitable modifications
of the gauge functions by higher order terms should reveal the exact laws of
supergravity. Moreover, the word identification means that the gravitational
TQFT reproduces the supergravity around a Spin(7) ⊂ SO(8) invariant
background. The SU(2) internal symmetry of the N = 2 D = 8 supergrav-
ity multiplet is not explicit in our construction. This is a direct consequence
of the fact that, in the 8-dimensional TQFT, both gravitinos have different
origins, as topological ghosts of a 2-form of a 3-form.

4 A digression about the TQFT for the 3-

form

It is actually an interesting question to investigate whether a TQFT for the
3-form alone has some interest, in particular for the study of 8-dimensional
manifolds with Spin(7) holonomies and of 7-dimensional manifolds with G2

holonomies. This was suggested as early as in [1]. We would like to briefly
sketch new ideas relative to this question and indicate a possible hint for
getting an interacting theory for the 3-form, when topological gravity is de-
coupled.
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We have seen in the previous section that the TQFT multiplet for a 3-
form is basically made of the following fields:

C3, 2B2, 2A1, 2S, ̄α
µ, 2̐α (34)

These fields are those that propagate in the TQFT, provided one does a
suitable gauge-fixing. Spinorial notations have already been used for the
Fermi fields that are topological ghosts.

We understood in the previous section that the gravitino ̄α
µ (a 1-form

which a spinorial index) is made of topological ghosts, including the self-
dual antighost ̐µνρσ+ of C3 The multiplet (34) does not involve a metric.
If we follow the conventional pattern for building a TQFT, we introduce an
external metric gµν , and do a topological BRST invariant gauge-fixing. In
this way, we can get a free TQFT action for the fields in Eq. (34). The action
contains the term:

∫

d8x s(̐µνρσ+

(∂[σBµνρ] + Hµνρσ+))

=
∫

d8x (|dB3 +∗ dB3|2 + . . .)

=
∫

d8x
√

g(gµµ′

gνν′

gρρ′gσσ′

∂[σBµνρ]∂[σ′Bµ′ν′ρ′] + . . .) (35)

The dots are easy to compute. We can dimensionally reduce the fields and
get a TQFT in seven dimensions, for a 3-form and a 2-form. The self-
duality condition in eight dimensions is replaced by the following one in
seven dimensions, which also stands for 35 conditions:

dC3 +∗ dB2 = 0 (36)

Imposing these conditions in a BRST-invariant way is allowed by the fact
that C3 and B2 carry 20 and 15 degrees of freedom modulo gauge transfor-
mations in seven dimensions. Eq. (36) is a generalization of the well-known
Bogomolny equation.

If we can define a metric gij(B3) in seven dimensions, which depends on
the 3-form, and use it for the ∗ Hodge operation, we can trigger interactions
between the forms, by defining the following action:

∫

d7xs(̐ijk((dB2 +∗ dC3)ijk + Hijk)

=
∫

d7x(|dB2 +∗ dC3|2 + . . .)
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=
∫

d7x
√

g(gii′gjj′gkk′

∂[iBjk] ∂[i′Bj′k′]

+gii′gjj′gkk′

gll′ ∂[iCjkl]∂[i′Cj′k′l′] + . . .) (37)

The dots involve the metric dependence of the 3-form. This action is anal-
ogous in spirit to that of supersymmetric mechanics in curved space. The
subtlety is to find the relevant configuration space of the 3-form for defining
the path integral.

A further reduction in six dimensions determines theories with self-dual
2-forms. Such TQFTs have been directly studied in six dimensions, and
interesting correspondences with supersymmetry have already been found
[12].

There is another topological field theory, which we can obtain by directly
starting from the topological action

∫

M7
C3 ∧ dC3. For certain manifolds, one

can give a special role to the direction x7 and write:
∫

M7

C3 ∧ dC3 =
∫

M7

d7x(C7abǫ
abcdef∂[cCdef ] + ǫabcdefCabc∂7Cdef ) (38)

Here, a, b, c, d, e, f stand for 6-dimensional indices.
Generalizing the analysis of the Chern–Simons theory in three dimensions

[11], formal manipulations suggest that the 7-dimensional theory with the
above action might also describe a theory in six dimensions, depending of a
2-form, with an action of the type:

∫

M6

d6x
√

g gaa′

gbb′gcc′ ∂[aBbc] ∂[a′Bb′c′] + WZZ action (39)

A heuristic argument can be done by formally integrating out C7ab, solving
the constraint ∂[aBbc] = 0, and picking a slice at x7 = cte. Eventually, the
6d-metric depends on the 2-form, gaa′

= gaa′

(dB2), and we have a non trivial
model. The observables in the seven dimensional theory theory are obtained
from the flux of the 3-form on a 3-cycle:

exp

∫ ∫ ∫

Γ3

Cijkdxi ∧ dxj ∧ dxk (40)

and

exp

∫ ∫

Γ2

Bijdxi ∧ dxj (41)

We leave the investigation of these theories for future work.
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5 Higher dimensions and N=1 D=11 super-

gravity

We have shown in section 3 that the 8-dimensional gravitational TQFT re-
produces, up to twist, the N = 2 D = 8 supergravity theory in the quadratic
approximation in the gravitino fields, around a Spin(7) invariant vacuum.
However, we left open the question of precisely determining the mechanism
according to which Chern-Simons interactions are built in the TQFT.

We wish to look in more details how we can lift in higher dimensions the
8-dimensional TQFT that we have built in section 3.

Let us recall that N = 1 D = 11 supergravity can be reduced to type
IIA 10-dimensional supergravity, which, in turns, can be reduced to a 9-
dimensional model and, eventually, to N = 2 D = 8 supergravity theory.

This 9-dimensional model can also be deduced from type IIB 10-dimensional
supergravity. The 9-dimensional theory is interesting due the remarkable
properties of Spin(9) [16].

To relate the 8-dimensions TQFT with another one in 9 dimensions, we
tentatively refer to the mechanism explained in [15]. There, it is shown on
general grounds that, if one has a TQFT in d dimensions, with an action of
the type Id =

∫

Md
(d(...) + {Q, ...}), where Q2 vanishes modulo some gauge

transformations, then, it exists another operator Qd+1 in d + 1 dimensions,
such that

Q2
d+1 = ∂

xd+1,
(42)

modulo gauge transformations. Qd+1 acts on d+1 dimensional fields which
are in one to one correspondence with those of the d-dimensional theory.
Qd+1 is identical to Q when fields are taken at equal values of xd+1. The
existence of the Q-exact action Id implies that of an action Id+1 in d + 1
dimensions, which is of the type [15]:

Id+1 =
∫

Md+1

(∆d+1 + {Qd+1, ...} ) (43)

∆d+1 contains Chern–Simons terms and is Qd+1-invariant but not Qd+1-exact.
It descends from the cocycles that one can construct for the cohomology of
the Q symmetry [15]. It contains terms that are only SO(d) ⊂ SO(d + 1)
invariant. These general properties have been analyzed in great details in
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[15], and geometrical arguments have been given for explaining such a delicate
mechanism that relates theories in d and d+1 dimensions.

The second term in the r.h.s of Eq. (43) gives back the action Id we started
from, by standard dimensional reduction, up to Chern–Simons terms. How-
ever, as emphasized in in [15], one may obtain deformations of the original
d-dimensional theory. For instance, compactification on a circle provides a
radius R that may be used as a parameter for the deformation, when one
descends from d + 1 to d dimensions.

In our case, we start from the the 8 dimensional Q-exact action that we
have introduced in section 3. Using the method of [15], we can construct
9-dimensional fields from the 8-dimensional ones and introduce the following
Q9-invariant term in 9 dimensions:

∫

∆9 =
∫

(A ∧ dC3 ∧ dC3 + B
(−2)
2 ∧ dB2 ∧ dC3

+dx9(̞
(2)
0 dC3 ∧ dC3 + ̞

(0)
1 ∧ dB2 ∧ dC3 +

̑
(1)
3 ∧ ̑

(1)
3 ∧ dA + dB

(−2)
2 ∧ Ψ

(1)
2 ∧ Ψ

(1)
3 ) ) (44)

We can add to ∆9 a Q9-exact action, which is inspired from the one we have
constructed in section 3. Eventually, it is likely that we will determine in this
way the 9-dimensional supergravity action, including Chern-Simons terms.

The first terms in (44) are the dimensional reduction, modulo d-exact
terms, of the 11-dimensional Chern-Simons term

∆11 = C3 ∧ dC3 ∧ dC3 + dx11(̞
(2)
2 ∧ dC3 ∧ dC3 + ̑

(1)
3 ∧ ̑

(1)
3 ∧ dC3) (45)

We thus postulate the existence of a TQFT in 11 dimensions of a TQFT
with an action of the following type:
∫

(C3 ∧ dC3 ∧ dC3 + dx11(̞
(2)
2 dC3 ∧ dC3 + ̑

(1)
3 ∧ ̑

(1)
3 ∧ dC3) + {Q11, Z11})

(46)

The first terms are Q11-closed but not Q11-exact. The last term, which is
Q11-exact, determines propagators and regularizes the theory. We conjecture
that the existence of the gauge fermion Z11 on 11-dimensional manifolds with
Spin(7) holonomy follows from that of the TQFT in 8 dimensions. The
action (46) should be closely related to that of N = 1, D = 11 supergravity
on special manifolds. Various types of compactifications from 11 to 8 and 7
dimensions may produce interesting deformations.
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Our suggestion is that the TQFT point of view is likely to to single out
the Chern–Simon part of the supergravity action in 11 dimensions as a Q-
invariant but not Q-exact terms, while the rest of the action can be cast in
a Q-exact form. The latter part, which includes the Einstein–Hilbert and
Rarita–Schwinger actions, is important to regularize the theory and the path
integral; however, in the topological phase, only the the Chern–Simons part
is truly relevant.

6 Conclusion and discussion

This paper shows that, in eight dimensions, the TQFT for a metric, two
1-forms, a 2-form and a 3-form reproduces in a twisted form (at least in
the quadratic approximation) the N = 2 D = 8 supergravity in a Spin(7)-
invariant gravitational background, which is the dimensional reduction of
N = 1 D = 11 supergravity. We found the relevant self-duality equations for
defining the TQFT.

This result is quite interesting. In particular, it gives an alternative def-
inition for local supersymmetry. It circumvates the challenge of closing the
algebra of infinitesimal transformations of supergravities by mean of auxiliary
fields and of getting a group structure for the transformations of supergrav-
ity. We now understand the fact that the latter “close modulo equations
of motions” as a consequence of the determination of a TQFT by enforcing
self–duality equations in a BRST invariant way.

Many dimensional reductions of the TQFT that we have exhibited can
be thought of. We foresee theories in seven and six dimensions, where
G2 ⊂ Spin(7) ⊂ SO(8) plays an important role [17], as well as potentially
interesting models in 3, 2, 1 and 0 dimensions. In the latter case, there
could be a generalization of the DVV matrix model [13] by gravitational
terms, stemming from the topological 8-dimensional action. They might be
relevant to the recent works in [14].

The 8-dimensional gravitational theory can be also coupled to a non
Abelian Yang–Mills theory, which allows us to consider other types of models
by dimensional reduction, and perhaps, to find a description of the octonionic
superstring [19].

A more speculative idea is that, since N = 1 D = 11 supergravity seems
of a topological origin, it might encode by dimensional reduction the super-
symmetric expression of stochastically quantized gauge theories, which have
also the structure of a TQFT, and efficiently regularize many of the prob-
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lems that one encounters in the quantization of 4-dimensional Yang–Mills
theories [18].

We added the following remarks.
The construction of a TQFT for a 3-form in eight dimensions can be done

independently of the context of topological gravity. It still needs Spin(7)
holonomy manifolds, but the metric is no longer an independent field. One
gets models of the topological type that depend on a gravitino and seem
to contain topological observables. Such models are related to the“Chern–
Simons action”

∫

C3 ∧ dC3 in seven dimensions.
We also suggested that, on special manifolds, the supergravity action in

eleven dimensions can be separated into a Q-closed but not Q-exact term,
which is the Chern–Simons part, and a Q-exact term, which defines the
propagation of the fields.
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