8 research outputs found

    Targeted Reinforcement of Macrophage Reprogramming Toward M2 Polarization by IL-4-Loaded Hyaluronic Acid Particles

    Get PDF
    Alteration of macrophage polarization from inflammatory (M1) to anti-inflammatory (M2) phenotype can have striking implications for the regeneration of injured tissues, treatment of inflammatory diseases, and relief of autoimmune disorders. Although certain cytokines like interleukin (IL)-4 and IL-13 are capable of inducing M2 macrophage polarization, their therapeutic potential in vivo is suffering from low efficacy due to their instability and poor access to target cells. Here, we report the synthesis of IL-4-loaded hyaluronic acid (HA) particle for the targeted delivery of cytokines through the high affinity of HA to CD44 receptors of macrophages. HA carriers composed of low, middle, and high molecular weight (MW) polymers were synthesized using divinyl sulfone (DVS) cross-linking. The MW of HA had a negligible effect on the physicochemical properties and biocompatibility of the macrophages, but as an indicative of M2 polarization, a significant change in the arginase-1 (Arg-1) activity, TNF-a release, and IL-10 secretion was observed for the HA particles prepared with high MW polymers. Therefore, these particles were loaded with IL-4 for simultaneous macrophage targeting and M1 to M2 reprogramming, evidenced by a remarkable increase in the Arg-1 to iNOS ratio, as well as CD163 and CD206 upregulation in the M1 macrophages, which were initially triggered by lipopolysaccharide and interferon-y.M.-A.S. acknowledges financial support from Academy of Finland (Decision no. 317316), Iran’s National Elites Foundation and Iran Nanotechnology Initiative Council. T.B.-R. acknowledges financial support from the Fundação para a Ciência e a Tecnologia (Grant no. SFRH/BD/110859/2015). Financial support from the FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through the FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) is acknowledged. H.A.S. acknowledges financial support from the Sigrid Jusélius Foundation (Decision no. 4704580), the Helsinki Institute of Life Science, and the Academy of Finland (Decision no. 1317042)

    Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine

    Get PDF
    Orally administrable drug delivery vehicles are developed to manage incurable inflammatory bowel disease (IBD), however, their therapeutic outcomes are compromised by the side effects of systemic drug exposure. Herein, we use hyaluronic acid functionalized porous silicon nanoparticle to bridge enzyme-responsive hydrogel and pH-responsive polymer, generating a hierarchical structured (nano-in-nano-in-micro) vehicle with programmed properties to fully and sequentially overcome the multiple obstacles for efficiently delivering drugs locally to inflamed sites of intestine. After oral administration, the pH-responsive matrix protects the embedded hybrid nanoparticles containing drug loaded hydrogels against the spatially variable physiological environments of the gastrointestinal tract until they reach the inflamed sites of intestine, preventing premature drug release. The negatively charged hybrid nanoparticles selectively target the inflamed sites of intestine, and gradually release drug in response to the microenvironment of inflamed intestine. Overall, the developed hierarchical structured and programmed vehicles load, protect, transport and release drugs locally to inflamed sites of intestine, contributing to superior therapeutic outcomes. Such strategy could also inspire the development of numerous hierarchical structured vehicles by other porous nanoparticles and stimuli-responsive materials for the local delivery of various drugs to treat plenty of inflammatory gastrointestinal diseases, including IBD, gastrointestinal cancers and viral infections.Peer reviewe

    Scaffold Vaccines for Generating Robust and Tunable Antibody Responses

    Get PDF
    Traditional bolus vaccines often fail to sustain robust adaptive immune responses, typically requiring multiple booster shots for optimal efficacy. Additionally, these provide few opportunities to control the resulting subclasses of antibodies produced, which can mediate effector functions relevant to distinct disease settings. Here, it is found that three scaffold-based vaccines, fabricated from poly(lactide-co-glycolide) (PLG), mesoporous silica rods, and alginate cryogels, induce robust, long-term antibody responses to a model peptide antigen gonadotropin-releasing hormone with single-shot immunization. Compared to a bolus vaccine, PLG vaccines prolong germinal center formation and T follicular helper cell responses. Altering the presentation and release of the adjuvant (cytosine-guanosine oligodeoxynucleotide, CpG) tunes the resulting IgG subclasses. Further, PLG vaccines elicit strong humoral responses against disease-associated antigens HER2 peptide and pathogenic E. coli, protecting mice against E. coli challenge more effectively than a bolus vaccine. Scaffold-based vaccines may thus enable potent, durable and versatile humoral immune responses against disease

    Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine

    Get PDF
    Orally administrable drug delivery vehicles are developed to manage incurable inflammatory bowel disease (IBD), however, their therapeutic outcomes are compromised by the side effects of systemic drug exposure. Herein, we use hyaluronic acid functionalized porous silicon nanoparticle to bridge enzyme-responsive hydrogel and pH-responsive polymer, generating a hierarchical structured (nano-in-nano-in-micro) vehicle with programmed properties to fully and sequentially overcome the multiple obstacles for efficiently delivering drugs locally to inflamed sites of intestine. After oral administration, the pH-responsive matrix protects the embedded hybrid nanoparticles containing drug loaded hydrogels against the spatially variable physiological environments of the gastrointestinal tract until they reach the inflamed sites of intestine, preventing premature drug release. The negatively charged hybrid nanoparticles selectively target the inflamed sites of intestine, and gradually release drug in response to the microenvironment of inflamed intestine. Overall, the developed hierarchical structured and programmed vehicles load, protect, transport and release drugs locally to inflamed sites of intestine, contributing to superior therapeutic outcomes. Such strategy could also inspire the development of numerous hierarchical structured vehicles by other porous nanoparticles and stimuli-responsive materials for the local delivery of various drugs to treat plenty of inflammatory gastrointestinal diseases, including IBD, gastrointestinal cancers and viral infections.</p

    Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine

    No full text
    Orally administrable drug delivery vehicles are developed to manage incurable inflammatory bowel disease (IBD), however, their therapeutic outcomes are compromised by the side effects of systemic drug exposure. Herein, we use hyaluronic acid functionalized porous silicon nanoparticle to bridge enzyme-responsive hydrogel and pH-responsive polymer, generating a hierarchical structured (nano-in-nano-in-micro) vehicle with programmed properties to fully and sequentially overcome the multiple obstacles for efficiently delivering drugs locally to inflamed sites of intestine. After oral administration, the pH-responsive matrix protects the embedded hybrid nanoparticles containing drug loaded hydrogels against the spatially variable physiological environments of the gastrointestinal tract until they reach the inflamed sites of intestine, preventing premature drug release. The negatively charged hybrid nanoparticles selectively target the inflamed sites of intestine, and gradually release drug in response to the microenvironment of inflamed intestine. Overall, the developed hierarchical structured and programmed vehicles load, protect, transport and release drugs locally to inflamed sites of intestine, contributing to superior therapeutic outcomes. Such strategy could also inspire the development of numerous hierarchical structured vehicles by other porous nanoparticles and stimuli-responsive materials for the local delivery of various drugs to treat plenty of inflammatory gastrointestinal diseases, including IBD, gastrointestinal cancers and viral infections.W.L. acknowledges the Orion Research Foundation for financial support. Z.L. acknowledges the Chinese Scholarship Council for financial support. T.B.-R. acknowledges financial support from the Fundação para a Ciência e a Tecnologia (grant no. SFRH/BD/110859/2015 ). H.Z. acknowledges Jane and Aatos Erkko Foundation (grant no. 4704010 ), Academic of Finland (grant no. 297580 ) and Sigrid Jusélius Foundation (grant no. 28001830K1 ) for financial support. D.L. acknowledges the Jane and Aatos Erkko Foundation for financial support. X.D. acknowledges financial support from the National Key R&D Program (Grant Nos. 2017YFA0504504 and 2016YFA0502001 ), the National Natural Science Foundation of China (Grant Nos. U1405223 and 81661138005 ), the Fundamental Research Funds for the Central Universities of China (Grant No. 20720160064 ), and the Program of Introducing Talents of Discipline to Universities (111 Project, B12001 ). H.A.S. acknowledges financial support from the Sigrid Jusélius Foundation (Decision No. 4704580 ), the European Research Council under the European Union's Seventh Framework Programme ( FP/2007-2013 , Grant No. 310892 ) and the HiLIFE Research Funds
    corecore