31,475 research outputs found
Phase Transitions in a Two-Component Site-Bond Percolation Model
A method to treat a N-component percolation model as effective one component
model is presented by introducing a scaled control variable . In Monte
Carlo simulations on , , and simple cubic
lattices the percolation threshold in terms of is determined for N=2.
Phase transitions are reported in two limits for the bond existence
probabilities and . In the same limits, empirical formulas
for the percolation threshold as function of one
component-concentration, , are proposed. In the limit a new
site percolation threshold, , is reported.Comment: RevTeX, 5 pages, 5 eps-figure
Improving jet distributions with effective field theory
We obtain perturbative expressions for jet distributions using soft-collinear
effective theory (SCET). By matching SCET onto QCD at high energy, tree level
matrix elements and higher order virtual corrections can be reproduced in SCET.
The resulting operators are then evolved to lower scales, with additional
operators being populated by required threshold matchings in the effective
theory. We show that the renormalization group evolution and threshold
matchings reproduce the Sudakov factors and splitting functions of QCD, and
that the effective theory naturally combines QCD matrix elements and parton
showers. The effective theory calculation is systematically improvable and any
higher order perturbative effects can be included by a well defined procedure.Comment: 4 pages, 1 figure; typos corrected and notation updated to match
hep-ph/060729
Emergence of Classical Orbits in Few-Cycle Above-Threshold Ionization
The time-dependent Schr\"odinger equation for atomic hydrogen in few-cycle
laser pulses is solved numerically. Introducing a positive definite quantum
distribution function in energy-position space, a straightforward comparison of
the numerical ab initio results with classical orbit theory is facilitated.
Integration over position space yields directly the photoelectron spectra so
that the various pathways contributing to a certain energy in the photoelectron
spectra can be established in an unprecedented direct and transparent way.Comment: 4 pages, 4 figures REVTeX (manuscript with higher resolution figures
available at http://www.dieterbauer.de/publist.html
On Power Suppressed Operators and Gauge Invariance in SCET
The form of collinear gauge invariance for power suppressed operators in the
soft-collinear effective theory is discussed. Using a field redefinition we
show that it is possible to make any power suppressed ultrasoft-collinear
operators invariant under the original leading order gauge transformations. Our
manipulations avoid gauge fixing. The Lagrangians to O(lambda^2) are given in
terms of these new fields. We then give a simple procedure for constructing
power suppressed soft-collinear operators in SCET_II by using an intermediate
theory SCET_I.Comment: 15 pages, journal versio
Size Matters: Origin of Binomial Scaling in Nuclear Fragmentation Experiments
The relationship between measured transverse energy, total charge recovered
in the detector, and size of the emitting system is investigated. Using only
very simple assumptions, we are able to reproduce the observed binomial
emission probabilities and their dependences on the transverse energy.Comment: 14 pages, including 4 figure
Second Law Induced Existence Conditions for Isothermal 2-Phase Region Cyclic Processes in Binary Mixtures
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Conditions describing the behaviour of the kink of isobars at the dew line in v-x-phase diagrams of binary mixtures are proved using the second law. These conditions are interesting in connection to the compatibility of Serogodsky's and van Platen's cycles with the second law of thermodynamics
- …