32,104 research outputs found
Phase Transitions in a Two-Component Site-Bond Percolation Model
A method to treat a N-component percolation model as effective one component
model is presented by introducing a scaled control variable . In Monte
Carlo simulations on , , and simple cubic
lattices the percolation threshold in terms of is determined for N=2.
Phase transitions are reported in two limits for the bond existence
probabilities and . In the same limits, empirical formulas
for the percolation threshold as function of one
component-concentration, , are proposed. In the limit a new
site percolation threshold, , is reported.Comment: RevTeX, 5 pages, 5 eps-figure
Combination of a magnetic Feshbach resonance and an optical bound-to-bound transition
We use laser light near resonant with an optical bound-to-bound transition to
shift the magnetic field at which a Feshbach resonance occurs. We operate in a
regime of large detuning and large laser intensity. This reduces the
light-induced atom-loss rate by one order of magnitude compared to our previous
experiments [D.M. Bauer et al. Nature Phys. 5, 339 (2009)]. The experiments are
performed in an optical lattice and include high-resolution spectroscopy of
excited molecular states, reported here. In addition, we give a detailed
account of a theoretical model that describes our experimental data
A Mott-like State of Molecules
We prepare a quantum state where each site of an optical lattice is occupied
by exactly one molecule. This is the same quantum state as in a Mott insulator
of molecules in the limit of negligible tunneling. Unlike previous Mott
insulators, our system consists of molecules which can collide inelastically.
In the absence of the optical lattice these collisions would lead to fast loss
of the molecules from the sample. To prepare the state, we start from a Mott
insulator of atomic 87Rb with a central region, where each lattice site is
occupied by exactly two atoms. We then associate molecules using a Feshbach
resonance. Remaining atoms can be removed using blast light. Our method does
not rely on the molecule-molecule interaction properties and is therefore
applicable to many systems.Comment: Proceedings of the 20th International Conference on Atomic Physics
(ICAP 2006), edited by C. Roos, H. Haffner, and R. Blatt, AIP Conference
Proceedings, Melville, 2006, Vol. 869, pp. 278-28
Atom-molecule Rabi oscillations in a Mott insulator
We observe large-amplitude Rabi oscillations between an atomic and a
molecular state near a Feshbach resonance. The experiment uses 87Rb in an
optical lattice and a Feshbach resonance near 414 G. The frequency and
amplitude of the oscillations depend on magnetic field in a way that is well
described by a two-level model. The observed density dependence of the
oscillation frequency agrees with the theoretical expectation. We confirmed
that the state produced after a half-cycle contains exactly one molecule at
each lattice site. In addition, we show that for energies in a gap of the
lattice band structure, the molecules cannot dissociate
A Fast Algorithm for Simulating the Chordal Schramm-Loewner Evolution
The Schramm-Loewner evolution (SLE) can be simulated by dividing the time
interval into N subintervals and approximating the random conformal map of the
SLE by the composition of N random, but relatively simple, conformal maps. In
the usual implementation the time required to compute a single point on the SLE
curve is O(N). We give an algorithm for which the time to compute a single
point is O(N^p) with p<1. Simulations with kappa=8/3 and kappa=6 both give a
value of p of approximately 0.4.Comment: 17 pages, 10 figures. Version 2 revisions: added a paragraph to
introduction, added 5 references and corrected a few typo
Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation
We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\"om systems
which describe large particle ensembles interacting by either electromagnetic
fields or a relativistic scalar gravity model. For both systems we derive a
radiation formula analogous to the Einstein quadrupole formula in general
relativity.Comment: 21 page
Probing 5f-state configurations in URu2Si2 with U L3-edge resonant x-ray emission spectroscopy
Resonant x-ray emission spectroscopy (RXES) was employed at the U L3
absorption edge and the La1 emission line to explore the 5f occupancy, nf, and
the degree of 5f orbital delocalization in the hidden order compound URu2Si2.
By comparing to suitable reference materials such as UF4, UCd11, and alpha-U,
we conclude that the 5f orbital in URu2Si2 is at least partially delocalized
with nf = 2.87 +/- 0.08, and does not change with temperature down to 10 K
within the estimated error. These results place further constraints on
theoretical explanations of the hidden order, especially those requiring a
localized f2 ground state.Comment: 11 pages,7 figure
Low spin wave damping in the insulating chiral magnet CuOSeO
Chiral magnets with topologically nontrivial spin order such as Skyrmions
have generated enormous interest in both fundamental and applied sciences. We
report broadband microwave spectroscopy performed on the insulating chiral
ferrimagnet CuOSeO. For the damping of magnetization dynamics we
find a remarkably small Gilbert damping parameter of about at
5 K. This value is only a factor of 4 larger than the one reported for the best
insulating ferrimagnet yttrium iron garnet. We detect a series of sharp
resonances and attribute them to confined spin waves in the mm-sized samples.
Considering the small damping, insulating chiral magnets turn out to be
promising candidates when exploring non-collinear spin structures for high
frequency applications.Comment: 5 pages, 5 figures, and supplementary materia
Senior Programmers: Characteristics of Elderly Users from Stack Overflow
In this paper we presents results of research about elderly users of Stack
Overflow (Question and Answer portal for programmers). They have different
roles, different main activities and different habits. They are an important
part of the community, as they tend to have higher reputation and they like to
share their knowledge. This is a great example of possible way of keeping
elderly people active and helpful for society
Theory of a Magnetically-Controlled Quantum-Dot Spin Transistor
We examine transport through a quantum dot coupled to three ferromagnetic
leads in the regime of weak tunnel coupling. A finite source-drain voltage
generates a nonequilibrium spin on the otherwise non-magnetic quantum dot. This
spin accumulation leads to magnetoresistance. A ferromagnetic but current-free
base electrode influences the quantum-dot spin via incoherent spin-flip
processes and coherent spin precession. As the dot spin determines the
conductance of the device, this allows for a purely magnetic transistor-like
operation. We analyze the effect of both types of processes on the electric
current in different geometries.Comment: 7 pages, 6 figure
- …