44,043 research outputs found

    Field dependent quasiparticles in the infinite dimensional Hubbard model

    Full text link
    We present dynamical mean field theory (DMFT) results for the local spectral densities of the one- and two-particle response functions for the infinite dimensional Hubbard model in a magnetic field. We look at the different regimes corresponding to half-filling, near half-filling and well away from half-filling, for intermediate and strong values of the local interaction UU. The low energy results are analyzed in terms of quasiparticles with field dependent parameters. The renormalized parameters are determined by two different methods, both based on numerical renormalization group (NRG) calculations, and we find good agreement. Away from half-filling the quasiparticle weights, zσ(H)z_\sigma(H), differ according to the spin type σ=\sigma=\uparrow or σ=\sigma=\downarrow. Using the renormalized parameters, we show that DMFT-NRG results for the local longitudinal and transverse dynamic spin susceptibilities in an arbitrary field can be understood in terms of repeated scattering of these quasiparticles. We also check Luttinger's theorem for the Hubbard model and find it to be satisfied in all parameter regimes and for all values of the magnetic field.Comment: 14 pages, 21 figure

    Comments on the Links between su(3) Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards

    Get PDF
    We examine the proposal made recently that the su(3) modular invariant partition functions could be related to the geometry of the complex Fermat curves. Although a number of coincidences and similarities emerge between them and certain algebraic curves related to triangular billiards, their meaning remains obscure. In an attempt to go beyond the su(3) case, we show that any rational conformal field theory determines canonically a Riemann surface.Comment: 56 pages, 4 eps figures, LaTeX, uses eps

    The Non-Mesonic Weak Decay of Double-Lambda Hypernuclei: A Microscopic Approach

    Get PDF
    The non--mesonic weak decay of double--Λ\Lambda hypernuclei is studied within a microscopic diagrammatic approach. Besides the nucleon--induced mechanism, ΛNnN\Lambda N\to nN, widely studied in single--Λ\Lambda hypernuclei, additional hyperon--induced mechanisms, ΛΛΛn\Lambda \Lambda\to \Lambda n, ΛΛΣ0n\Lambda \Lambda\to \Sigma^0 n and ΛΛΣp\Lambda \Lambda\to \Sigma^-p, are accessible in double--Λ\Lambda hypernuclei and are investigated here. As in previous works on single--Λ\Lambda hypernuclei, we adopt a nuclear matter formalism extended to finite nuclei via the local density approximation and a one--meson exchange weak transition potential (including the ground state pseudoscalar and vector octets mesons) supplemented by correlated and uncorrelated two--pion--exchange contributions. The weak decay rates are evaluated for hypernuclei in the region of the experimentally accessible light hypernuclei ΛΛ10^{10}_{\Lambda\Lambda}Be and ΛΛ13^{13}_{\Lambda\Lambda}B. Our predictions are compared with a few previous evaluations. The rate for the ΛΛΛn\Lambda \Lambda\to \Lambda n decay is dominated by KK--, KK^*-- and η\eta--exchange and turns out to be about 2.5\% of the free Λ\Lambda decay rate, ΓΛfree\Gamma_{\Lambda}^{\rm free}, while the total rate for the ΛΛΣ0n\Lambda \Lambda\to \Sigma^0 n and ΛΛΣp\Lambda \Lambda\to \Sigma^- p decays, dominated by π\pi--exchange, amounts to about 0.25\% of ΓΛfree\Gamma_{\Lambda}^{\rm free}. The experimental measurement of these decays would be essential for the beginning of a systematic study of the non--mesonic decay of strangeness 2-2 hypernuclei. This field of research could also shed light on the possible existence and nature of the HH--dibaryon.Comment: 17 pages, 2 figure

    On the Coexistence Magnetism/Superconductivity in the Heavy-Fermion Superconductor CePt3_3Si

    Full text link
    The interplay between magnetism and superconductivity in the newly discovered heavy-fermion superconductor CePt3_3Si has been investigated using the zero-field μ\muSR technique. The μ\muSR data indicate that the whole muon ensemble senses spontaneous internal fields in the magnetic phase, demonstrating that magnetism occurs in the whole sample volume. This points to a microscopic coexistence between magnetism and heavy-fermion superconductivity.Comment: Final version, new figure structure, references correcte

    Project management techniques for highly integrated programs

    Get PDF
    The management and control of a representative, highly integrated high-technology project, in the X-29A aircraft flight test project is addressed. The X-29A research aircraft required the development and integration of eight distinct technologies in one aircraft. The project management system developed for the X-29A flight test program focuses on the dynamic interactions and the the intercommunication among components of the system. The insights gained from the new conceptual framework permitted subordination of departments to more functional units of decisionmaking, information processing, and communication networks. These processes were used to develop a project management system for the X-29A around the information flows that minimized the effects inherent in sampled-data systems and exploited the closed-loop multivariable nature of highly integrated projects

    Runtime Verification of Temporal Properties over Out-of-order Data Streams

    Full text link
    We present a monitoring approach for verifying systems at runtime. Our approach targets systems whose components communicate with the monitors over unreliable channels, where messages can be delayed or lost. In contrast to prior works, whose property specification languages are limited to propositional temporal logics, our approach handles an extension of the real-time logic MTL with freeze quantifiers for reasoning about data values. We present its underlying theory based on a new three-valued semantics that is well suited to soundly and completely reason online about event streams in the presence of message delay or loss. We also evaluate our approach experimentally. Our prototype implementation processes hundreds of events per second in settings where messages are received out of order.Comment: long version of the CAV 2017 pape

    Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility

    Full text link
    We report simultaneous measurements of the magnetization and the ac susceptibility across the magnetic phase diagram of single-crystal MnSi. In our study we explore the importance of the excitation frequency, excitation amplitude, sample shape, and crystallographic orientation. The susceptibility, dM/dH, calculated from the magnetization, is dominated by pronounced maxima at the transition from the helical to the conical and the conical to the skyrmion lattice phase. The maxima in dM/dH are not tracked by the ac susceptibility, which in addition varies sensitively with the excitation amplitude and frequency at the transition from the conical to the skyrmion lattice phase. The same differences between dM/dH and the ac susceptibility exist for Mn1-xFexSi (x=0.04) and Fe1-xCoxSi (x=0.20). Taken together our study establishes consistently for all major crystallographic directions the existence of a single pocket of the skyrmion lattice phase in MnSi, suggestive of a universal characteristic of all B20 transition metal compounds with helimagnetic order.Comment: 19 pages, 20 figure

    Soft-Collinear Messengers: A New Mode in Soft-Collinear Effective Theory

    Full text link
    It is argued that soft-collinear effective theory for processes involving both soft and collinear partons, such as exclusive B-meson decays, should include a new mode in addition to soft and collinear fields. These "soft-collinear messengers" can interact with both soft and collinear particles without taking them far off-shell. They thus can communicate between the soft and collinear sectors of the theory. The relevance of the new mode is demonstrated with an explicit example, and the formalism incorporating the corresponding quark and gluon fields into the effective Lagrangian is developed.Comment: 22 pages, 5 figures. Extended Section 6, clarifying the relevance of different types of soft-collinear interaction

    A proof of factorization for B -> D pi

    Get PDF
    We prove that the matrix elements of four fermion operators mediating the decay B^0 -> D^+ \pi^- and B^- -> D^0 \pi^- factor into the product of a form factor describing the B -> D transition and a convolution of a short distance coefficient with the nonperturbative pion light-cone wave function. This is shown to all orders in alpha_s, up to corrections suppressed by factors of 1/mb, 1/mc, and 1/E_pi. It is not necessary to assume that the pion state is dominated by the q-qbar Fock state.Comment: 4 pages, 3 figs, PRL versio
    corecore