2,227 research outputs found

    The measure of success: geographic isolation promotes diversification in Pachydactylus geckos

    Full text link
    Abstract Background Geckos of the genus Pachydactylus and their close relatives comprise the most species-rich clade of lizards in sub-Saharan Africa. Many explanations have been offered to explain species richness patterns of clades. In the Pachydactylus group, one possible explanation is a history of diversification via geographic isolation. If geographic isolation has played a key role in facilitating diversification, then we expect species in more species-rich subclades to have smaller ranges than species in less diverse subclades. We also expect traits promoting geographic isolation to be correlated with small geographic ranges. In order to test these expectations, we performed phylogenetic analyses and tested for correlations among body size, habitat choice, range sizes, and diversification rates in the Pachydactylus group. Results Both body size and habitat use are inferred to have shifted multiple times across the phylogeny of the Pachydactylus group, with large size and generalist habitat use being ancestral for the group. Geographic range size is correlated with both of these traits. Small-bodied species have more restricted ranges than large-bodied species, and rock-dwelling species have more restricted ranges than either terrestrial or generalist species. Rock-dwelling and small body size are also associated with higher rates of diversification, and subclades retaining ancestral conditions for these traits are less species rich than subclades in which shifts to small body size and rocky habitat use have occurred. The phylogeny also illustrates inadequacies of the current taxonomy of the group. Conclusions The results are consistent with a model in which lineages more likely to become geographically isolated diversify to a greater extent, although some patterns also resemble those expected of an adaptive radiation in which ecological divergence acts as a driver of speciation. Therefore, the Pachydactylus group may represent an intermediate between clades in which radiation is adaptive versus those in which it is non-adaptive.http://deepblue.lib.umich.edu/bitstream/2027.42/135714/1/12862_2016_Article_846.pd

    Pure Samples of Quark and Gluon Jets at the LHC

    Get PDF
    Having pure samples of quark and gluon jets would greatly facilitate the study of jet properties and substructure, with many potential standard model and new physics applications. To this end, we consider multijet and jets+X samples, to determine the purity that can be achieved by simple kinematic cuts leaving reasonable production cross sections. We find, for example, that at the 7 TeV LHC, the pp {\to} {\gamma}+2jets sample can provide 98% pure quark jets with 200 GeV of transverse momentum and a cross section of 5 pb. To get 10 pb of 200 GeV jets with 90% gluon purity, the pp {\to} 3jets sample can be used. b+2jets is also useful for gluons, but only if the b-tagging is very efficient.Comment: 19 pages, 16 figures; v2 section on formally defining quark and gluon jets has been adde

    Development and assessment of a clinical calculator for estimating the likelihood of recurrence and survival among patients with locally advanced rectal cancer treated with chemotherapy, radiotherapy, and surgery

    Get PDF
    Importance: Predicting outcomes in patients receiving neoadjuvant therapy for rectal cancer is challenging because of tumor downstaging. Validated clinical calculators that can estimate recurrence-free survival (RFS) and overall survival (OS) among patients with rectal cancer who have received multimodal therapy are needed. Objective: To develop and validate clinical calculators providing estimates of rectal cancer recurrence and survival that are better for individualized decision-making than the American Joint Committee on Cancer (AJCC) staging system or the neoadjuvant rectal (NAR) score. Design, Setting, and Participants: This prognostic study developed risk models, graphically represented as nomograms, for patients with incomplete pathological response using Cox proportional hazards and multivariable regression analyses with restricted cubic splines. Because patients with complete pathological response to neoadjuvant therapy had uniformly favorable outcomes, their predictions were obtained separately. The study included 1400 patients with stage II or III rectal cancer who received treatment with chemotherapy, radiotherapy, and surgery at 2 comprehensive cancer centers (Memorial Sloan Kettering [MSK] Cancer Center and Siteman Cancer Center [SCC]) between January 1, 1998, and December 31, 2017. Patients from the MSK cohort received chemoradiation, surgery, and adjuvant chemotherapy from January 1, 1998, to December 31, 2014; these patients were randomly assigned to either a model training group or an internal validation group. Models were externally validated using data from the SCC cohort, who received either chemoradiation, surgery, and adjuvant chemotherapy (chemoradiotherapy group) or short-course radiotherapy, consolidation chemotherapy, and surgery (total neoadjuvant therapy with short-course radiotherapy group) from January 1, 2009, to December 31, 2017. Data were analyzed from March 1, 2020, to January 10, 2021. Exposures: Chemotherapy, radiotherapy, chemoradiotherapy, and surgery. Main Outcomes and Measures: Recurrence-free survival and OS were the outcome measures, and the discriminatory performance of the clinical calculators was measured with concordance index and calibration plots. The ability of the clinical calculators to predict RFS and OS was compared with that of the AJCC staging system and the NAR score. The models for RFS and OS among patients with incomplete pathological response included postoperative pathological tumor category, number of positive lymph nodes, tumor distance from anal verge, and large- and small-vessel venous and perineural invasion; age was included in the risk model for OS. The final clinical calculators provided RFS and OS estimates derived from Kaplan-Meier curves for patients with complete pathological response and from risk models for patients with incomplete pathological response. Results: Among 1400 total patients with locally advanced rectal cancer, the median age was 57.8 years (range, 18.0-91.9 years), and 863 patients (61.6%) were male, with tumors at a median distance of 6.7 cm (range, 0-15.0 cm) from the anal verge. The MSK cohort comprised 1069 patients; of those, 710 were assigned to the model training group and 359 were assigned to the internal validation group. The SCC cohort comprised 331 patients; of those, 200 were assigned to the chemoradiotherapy group and 131 were assigned to the total neoadjuvant therapy with short-course radiotherapy group. The concordance indices in the MSK validation data set were 0.70 (95% CI, 0.65-0.76) for RFS and 0.73 (95% CI, 0.65-0.80) for OS. In the external SCC data set, the concordance indices in the chemoradiotherapy group were 0.71 (95% CI, 0.62-0.81) for RFS and 0.72 (95% CI, 0.59-0.85) for OS; the concordance indices in the total neoadjuvant therapy with short-course radiotherapy group were 0.62 (95% CI, 0.49-0.75) for RFS and 0.67 (95% CI, 0.46-0.84) for OS. Calibration plots confirmed good agreement between predicted and observed events. These results compared favorably with predictions based on the AJCC staging system (concordance indices for MSK validation: RFS = 0.69 [95% CI, 0.64-0.74]; OS = 0.67 [95% CI, 0.58-0.75]) and the NAR score (concordance indices for MSK validation: RFS = 0.56 [95% CI, 0.50-0.63]; OS = 0.56 [95% CI, 0.46-0.66]). Furthermore, the clinical calculators provided more individualized outcome estimates compared with the categorical schemas (eg, estimated RFS for patients with AJCC stage IIIB disease ranged from 7% to 68%). Conclusions and Relevance: In this prognostic study, clinical calculators were developed and validated; these calculators provided more individualized estimates of the likelihood of RFS and OS than the AJCC staging system or the NAR score among patients with rectal cancer who received multimodal treatment. The calculators were easy to use and applicable to both short- and long-course radiotherapy regimens, and they may be used to inform surveillance strategies and facilitate future clinical trials and statistical power calculations

    Circadian Rhythm Disruption Promotes Lung Tumorigenesis

    Get PDF
    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression

    AN APPROACH FOR THE EFFECTIVE UTILIZATION OF GP-GPUS IN PARALLEL COMBINED SIMULATION

    Get PDF
    A major challenge in the field of Modeling & Simulation is providing efficient parallel computation for a variety of algorithms. Algorithms that are described easily and computed efficiently for continuous simulation, may be complex to describe and/or efficiently execute in a discrete event context, and vice-versa. Real-world models often employ multiple algorithms that are optimally defined in one approach or the other. Parallel combined simulation addresses this problem by allowing models to define algorithmic components across multiple paradigms. In this paper, we illustrate the performance of parallel combined simulation, where the continuous component is executed across multiple graphical processing units (GPU) and the discrete event component is executed across multiple central processing units (CPU).

    Uncovering karst endemism within Borneo: two new Cyrtodactylus species from Sarawak, Malaysia

    Get PDF
    The island of Borneo lies within one of the most biodiverse regions in the world. Despite this, its documented gekkonid diversity is not commensurate with other areas of Southeast Asia. The megadiverse genus Cyrtodactylus is especially un-derrepresented. Limestone-karst ecosystems, in particular, harbor many endemic Cyrtodactylus species, but only one karst-dwelling species is currently recognized from Borneo. This paper adds two additional karst-dwelling Cyrtodactylus species—C. muluensis sp. nov. and C. limajalursp. nov.—from Sarawak, Malaysia. Cyrtodactylus muluensis sp. nov. is endemic to Gunung Mulu and is distinguished from its congeners by having a precloacal groove, 31–38 ventral scales, a maximum SVL of at least 88 mm, enlarged subcaudals, 19–20 subdigital lamellae, and a banded dorsal body pattern. Cyr-todactylus limajalur sp. nov. is endemic to the Serian region and is distinguished from its congeners by having 33–42 ven-tral scales, enlarged subcaudals, a precloacal pit, a maximum SVL of at least 94 mm, 5–6 enlarged femoral scales, 19–22 subdigital lamellae, and five distinct bands on the dorsum. Both species are phylogenetically distinct and deeply divergent from all other congeners. The description of two new karst-dwelling species highlights the need to conserve karst habitats and the endemic species they harbor
    • …
    corecore