66 research outputs found

    Fire responses shape plant communities in a minimal model for fire ecosystems across the world

    Full text link
    Across plant communities worldwide, fire regimes reflect a combination of climatic factors and plant characteristics. To shed new light on the complex relationships between plant characteristics and fire regimes, we developed a new conceptual, mechanistic model that includes plant competition, stochastic fires, and fire-vegetation feedback. Considering a single standing plant functional type, we observed that highly flammable and slowly colonizing plants can persist only when they have a strong fire response, while fast colonizing and less flammable plants can display a larger range of fire responses. At the community level, the fire response of the strongest competitor determines the existence of alternative ecological states, i.e. different plant communities, under the same environmental conditions. Specifically, when the strongest competitor had a very strong fire response, such as in Mediterranean forests, only one ecological state could be achieved. Conversely, when the strongest competitor was poorly fire-adapted, alternative ecological states emerged, for example between tropical humid savannas and forests, or between different types of boreal forests. These findings underline the importance of including the plant fire response when modeling fire ecosystems, e.g. to predict the vegetation response to invasive species or to climate change

    Rethinking tipping points in spatial ecosystems

    Full text link
    The theory of alternative stable states and tipping points has garnered a lot of attention in the last decades. It predicts potential critical transitions from one ecosystem state to a completely different state under increasing environmental stress. However, typically ecosystem models that predict tipping do not resolve space explicitly. As ecosystems are inherently spatial, it is important to understand the effects of incorporating spatial processes in models, and how those insights translate to the real world. Moreover, spatial ecosystem structures, such as vegetation patterns, are important in the prediction of ecosystem response in the face of environmental change. Models and observations from real savanna ecosystems and drylands have suggested that they may exhibit both tipping behavior as well as spatial pattern formation. Hence, in this paper, we use mathematical models of humid savannas and drylands to illustrate several pattern formation phenomena that may arise when incorporating spatial dynamics in models that exhibit tipping without resolving space. We argue that such mechanisms challenge the notion of large scale critical transitions in response to global change and reveal a more resilient nature of spatial ecosystems

    Evasion of tipping in complex systems through spatial pattern formation

    Get PDF
    The concept of tipping points and critical transitions helps inform our understanding of the catastrophic effects that global change may have on ecosystems, Earth system components, and the whole Earth system. The search for early warning indicators is ongoing, and spatial self-organization has been interpreted as one such signal. Here, we review how spatial self-organization can aid complex systems to evade tipping points and can therefore be a signal of resilience instead. Evading tipping points through various pathways of spatial pattern formation may be relevant for many ecosystems and Earth system components that hitherto have been identified as tipping prone, including for the entire Earth system. We propose a systematic analysis that may reveal the broad range of conditions under which tipping is evaded and resilience emerges

    Impact of different destocking strategies on the resilience of dry rangelands

    Get PDF
    Half of the world's livestock live in (semi-)arid regions, where a large proportion of people rely on animal husbandry for their survival. However, overgrazing can lead to land degradation and subsequent socio-economic crises. Sustainable management of dry rangeland requires suitable stocking strategies and has been the subject of intense debate in the last decades. Our goal is to understand how variations in stocking strategies affect the resilience of dry rangelands. We describe rangeland dynamics through a simple mathematical model consisting of a system of coupled differential equations. In our model, livestock density is limited only by forage availability, which is itself limited by water availability. We model processes typical of dryland vegetation as a strong Allee effect, leading to bistability between a vegetated and a degraded state, even in the absence of herbivores. We study analytically the impact of varying the stocking density and the destocking adaptivity on the resilience of the system to the effects of drought. By using dynamical systems theory, we look at how different measures of resilience are affected by variations in destocking strategies. We find that the following: (1) Increasing stocking density decreases resilience, giving rise to an expected trade-off between productivity and resilience. (2) There exists a maximal sustainable livestock density above which the system can only be degraded. This carrying capacity is common to all strategies. (3) Higher adaptivity of the destocking rate to available forage makes the system more resilient: the more adaptive a system is, the bigger the losses of vegetation it can recover from, without affecting the long-term level of productivity. The first two results emphasize the need for suitable dry rangeland management strategies, to prevent degradation resulting from the conflict between profitability and sustainability. The third point offers a theoretical suggestion for such a strategy

    Fire Responses Shape Plant Communities in a Minimal Model for Fire Ecosystems across the World

    Get PDF
    Across plant communities worldwide, fire regimes re-flect a combination of climatic factors and plant characteristics. To shed new light on the complex relationships between plant characteristics and fire regimes, we developed a new conceptual mechanistic model that includes plant competition, stochastic fires, and fire-vegetation feedback. Considering a single standing plant functional type, we observed that highly flammable and slowly colonizing plants can persist only when they have a strong fire response, while fast colonizing and less flammable plants can display a larger range of fire re-sponses. At the community level, the fire response of the strongest competitor determines the existence of alternative ecological states (i.e., different plant communities) under the same environmental con-ditions. Specifically, when the strongest competitor had a very strong fire response, such as in Mediterranean forests, only one ecological state could be achieved. Conversely, when the strongest competitor was poorly fire adapted, alternative ecological states emerged—for ex-ample, between tropical humid savannas and forests or between different types of boreal forests. These findings underline the importance of including the plant fire response when modeling fire ecosystems, for example, to predict the vegetation response to invasive species or to climate change

    Revealing patterns of local species richness along environmental gradients with a novel network tool

    Get PDF
    How species richness relates to environmental gradients at large extents is commonly investigated aggregating local site data to coarser grains. However, such relationships often change with the grain of analysis, potentially hiding the local signal. Here we show that a novel network technique, the “method of reflections”, could unveil the relationships between species richness and climate without such drawbacks. We introduced a new index related to potential species richness, which revealed large scale patterns by including at the local community level information about species distribution throughout the dataset (i.e., the network). The method effectively removed noise, identifying how far site richness was from potential. When applying it to study woody species richness patterns in Spain, we observed that annual precipitation and mean annual temperature explained large parts of the variance of the newly defined species richness, highlighting that, at the local scale, communities in drier and warmer areas were potentially the species richest. Our method went far beyond what geographical upscaling of the data could unfold, and the insights obtained strongly suggested that it is a powerful instrument to detect key factors underlying species richness patterns, and that it could have numerous applications in ecology and other fields

    Modelling how negative plant-soil feedbacks across life stages affect the spatial patterning of trees

    Get PDF
    In this work, we theoretically explore how litter decomposition processes and soil-borne pathogens contribute to negative plant-soil feedbacks, in particular in transient and stable spatial organisation of tropical forest trees and seedlings known as Janzen-Connell distributions. By considering soil-borne pathogens and autotoxicity both separately and in combination in a phenomenological model, we can study how both factors may affect transient dynamics and emerging Janzen-Connell distributions. We also identify parameter regimes associated with different long-term behaviours. Moreover, we compare how the strength of negative plant-soil feedbacks was mediated by tree germination and growth strategies, using a combination of analytical approaches and numerical simulations. Our interdisciplinary investigation, motivated by an ecological question, allows us to construct important links between local feedbacks, spatial self-organisation, and community assembly. Our model analyses contribute to understanding the drivers of biodiversity in tropical ecosystems, by disentangling the abilities of two potential mechanisms to generate Janzen-Connell distributions. Furthermore, our theoretical results may help guiding future field data analyses by identifying spatial signatures in adult tree and seedling distribution data that may reflect the presence of particular plant-soil feedback mechanisms

    Long-term transients help explain regime shifts in consumer-renewable resource systems

    Full text link
    As planetary boundaries loom, there is an urgent need to develop sustainable equilibriums between societies and the resources they consume, thereby avoiding regime shifts to undesired states. Transient system trajectories to a stable state may differ substantially, posing significant challenges to distinguishing sustainable from unsustainable trajectories. We use stylized models to show how feedbacks between anthropogenic harvest regimes and resource availability drive transient dynamics. We show how substantial time lags may occur between interventions and social-ecological outcomes, and that sudden system collapses need not be linked to recent environmental changes. Historical reconstructions of island state populations show a variety of transient dynamics that closely corresponds to model expectations based on island differences in productivity and harvesting regime. We conclude that vulnerable social-ecological systems may persist when the population:resource ratio remains within a viable range of intermediate (rather than small) values, which implies that averting environmental crises may require counter-intuitive measures

    Travelling waves due to negative plant-soil feedbacks in a model including tree life-stages

    Get PDF
    The emergence and maintenance of tree species diversity in tropical forests is commonly attributed to the Janzen-Connell (JC) hypothesis, which states that growth of seedlings is suppressed in the proximity of conspecific adult trees. As a result, a JC distribution due to a density-dependent negative feedback emerges in the form of a (transient) pattern where conspecific seedling density is highest at intermediate distances away from parent trees. Several studies suggest that the required density-dependent feedbacks behind this pattern could result from interactions between trees and soil-borne pathogens. However, negative plant-soil feedback may involve additional mechanisms, including the accumulation of autotoxic compounds generated through tree litter decomposition. An essential task therefore consists in constructing mathematical models incorporating both effects showing the ability to support the emergence of JC distributions. In this work, we develop and analyse a novel reaction-diffusion-ODE model, describing the interactions within tropical tree species across different life stages (seeds, seedlings, and adults) as driven by negative plant-soil feedback. In particular, we show that under strong negative plant-soil feedback travelling wave solutions exist, creating transient distributions of adult trees and seedlings that are in agreement with the Janzen-Connell hypothesis. Moreover, we show that these travelling wave solutions are pulled fronts and a robust feature as they occur over a broad parameter range. Finally, we calculate their linear spreading speed and show its (in)dependence on relevant nondimensional parameters
    • …
    corecore