26 research outputs found

    Proteoglycans and osteolysis.

    Get PDF
    Osteolysis is a complex mechanism resulting from an exacerbated activity of osteoclasts associated or not with a dysregulation of osteoblast metabolism leading to bone loss. This bone defect is not compensated by bone apposition or by apposition of bone matrix with poor mechanical quality. Osteolytic process is regulated by mechanical constraints, by polypeptides including cytokines and hormones, and by extracellular matrix components such as proteoglycans (PGs) and glycosaminoglycans (GAGs). Several studies revealed that GAGs may influence osteoclastogenesis, but data are very controversial: some studies showed a repressive effect of GAGs on osteoclastic differentiation, whereas others described a stimulatory effect. The controversy also affects osteoblasts which appear sometimes inhibited by polysaccharides and sometimes stimulated by these compounds. Furthermore, long-term treatment with heparin leads to the development of osteoporosis fueling the controversy. After a brief description of the principal osteoclastogenesis assays, the present chapter summarizes the main data published on the effect of PGs/GAGs on bone cells and their functional incidence on osteolysis

    VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology

    No full text
    Giant cell tumour of bone (GCTB) is a primary bone tumour that contains numerous very large, hyper-nucleated osteoclastic giant cells. Osteoclasts form from CD14+ monocytes and macrophages in the presence of receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage-colony stimulating factor (M-CSF). GCTB contains numerous growth factors, some of which have been reported to influence osteoclastogenesis and resorption. We investigated whether these growth factors are capable of substituting for M-CSF to support osteoclast formation from cultured human monocytes and whether they influence osteoclast cytomorphology and resorption. Vascular endothelial growth factor-A (VEGF-A), VEGF-D, FLT3 ligand (FL), placental growth factor (PlGF) and hepatocyte growth factor (HGF) supported RANKL-induced osteoclastogenesis in the absence of M-CSF, resulting in the formation of numerous TRAP+ multinucleated cells capable of lacunar resorption. Monocytes cultured in the presence of M-CSF, HGF, VEGF-A and RANKL together resulted in the formation of very large, hyper-nucleated (GCTB-like) osteoclasts that were hyper-resorptive. M-CSF and M-CSF substitute growth factors were identified immunohistochemically in GCTB tissue sections and these factors stimulated the resorption of osteoclasts derived from a subset of GCTBs. Our findings indicate that there are growth factors that are capable of substituting for M-CSF to induce human osteoclast formation and that these factors are present in GCTB where they influence osteoclast cytomorphology and have a role in osteoclast formation and resorption activity
    corecore