94 research outputs found
Multifrequency Analysis of Favored Models for the Messier 87* Accretion Flow
The polarized images of the supermassive black hole Messier 87* (M87*)
produced by the Event Horizon Telescope (EHT) provide a direct view of the
near-horizon emission from a black hole accretion and jet system. The EHT
theoretical analysis of the polarized M87* images compared thousands of
snapshots from numerical models with a variety of spins, magnetization states,
viewing inclinations, and electron energy distributions, and found a small
subset consistent with the observed image. In this article, we examine two
models favored by EHT analyses: a magnetically arrested disk with moderate
retrograde spin and a magnetically arrested disk with high prograde spin. Both
have electron distribution functions which lead to strong depolarization by
cold electrons. We ray trace five snapshots from each model at 22, 43, 86, 230,
345, and 690 GHz to forecast future VLBI observations and examine limitations
in numerical models. We find that even at low frequencies where optical and
Faraday rotation depths are large, approximately rotationally symmetric
polarization persists, suggesting that shallow depths dominate the polarization
signal. However, morphology and spectra suggest that the assumed thermal
electron distribution is not adequate to describe emission from the jet. We
find 86 GHz images show a ring-like shape determined by a combination of plasma
and spacetime imprints, smaller in diameter than recent results from the Global
mm-VLBI array. We find that the photon ring becomes more apparent with
increasing frequency, and is more apparent in the retrograde model, leading to
large differences between models in asymmetry and polarization structure.Comment: 8 pages, 4 figures, accepted to Ap
Multiculturalism and moderate secularism
What is sometimes talked about as the ‘post-secular’ or a ‘crisis of secularism’ is, in Western Europe, quite crucially to do with the reality of multiculturalism. By which I mean not just the fact of new ethno-religious diversity but the presence of a multiculturalist approach to this diversity, namely: the idea that equality must be extended from uniformity of treatment to include respect for difference; recognition of public/private interdependence rather than dichotomized as in classical liberalism; the public recognition and institutional accommodation of minorities; the reversal of marginalisation and a remaking of national citizenship so that all can have a sense of belonging to it. I think that equality requires that this ethno-cultural multiculturalism should be extended to include state-religion connexions in Western Europe, which I characterise as ‘moderate secularism’, based on the idea that political authority should not be subordinated to religious authority yet religion can be a public good which the state should assist in realising or utilising. I discuss here three multiculturalist approaches that contend this multiculturalising of moderate secularism is not the way forward. One excludes religious groups and secularism from the scope of multiculturalism (Kymlicka); another largely limits itself to opposing the ‘othering’ of groups such as Jews and Muslims (Jansen); and the third argues that moderate secularism is the problem not the solution (Bhargava)
The Event Horizon Telescope Image of the Quasar NRAO 530
We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin
First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, SagittariusA* (SgrA*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M ≈ 4 × 106 Me. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication
Ordered magnetic fields around the 3C 84 central black hole
Context. 3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz.
Aims. Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84.
Methods. We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u, v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure.
Results. We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency of νm = (113 ± 4) GHz, a corresponding synchrotron self-absorbed magnetic field of BSSA = (2.9 ± 1.6) G, and an equipartition magnetic field of Beq = (5.2 ± 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (mnet = (17.0 ± 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017–2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84.
Conclusions. The findings of our investigation into different flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84
The persistent shadow of the supermassive black hole of M 87 : I. Observations, calibration, imaging, and analysis
In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109 M⊙. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet
First Sagittarius A* Event Horizon Telescope Results. VII. Polarization of the Ring
The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M ≈ 4 × 106M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication
- …
