354 research outputs found

    Tracking Alu evolution in New World primates

    Get PDF
    BACKGROUND: Alu elements are Short INterspersed Elements (SINEs) in primate genomes that have proven useful as markers for studying genome evolution, population biology and phylogenetics. Most of these applications, however, have been limited to humans and their nearest relatives, chimpanzees. In an effort to expand our understanding of Alu sequence evolution and to increase the applicability of these markers to non-human primate biology, we have analyzed available Alu sequences for loci specific to platyrrhine (New World) primates. RESULTS: Branching patterns along an Alu sequence phylogeny indicate three major classes of platyrrhine-specific Alu sequences. Sequence comparisons further reveal at least three New World monkey-specific subfamilies; AluTa7, AluTa10, and AluTa15. Two of these subfamilies appear to be derived from a gene conversion event that has produced a recently active fusion of AluSc- and AluSp-type elements. This is a novel mode of origin for new Alu subfamilies. CONCLUSION: The use of Alu elements as genetic markers in studies of genome evolution, phylogenetics, and population biology has been very productive when applied to humans. The characterization of these three new Alu subfamilies not only increases our understanding of Alu sequence evolution in primates, but also opens the door to the application of these genetic markers outside the hominid lineage

    Distribution of the HIV resistance CCR5-Δ32 allele among Egyptians and Syrians

    Get PDF
    A mutant allele of the β-chemokine receptor gene CCR5 bearing a 32-basepair (bp) deletion that prevents cell invasion by the primary transmitting strain of HIV-1 has recently been characterized. Individuals homozygous for the mutation are resistant to infection, even after repeated high-risk exposure, but this resistance appears not absolute, as isolated cases of HIV-positive deletion homozygotes are emerging. The consequence of the heterozygous state is not clear, but it may delay the progression to AIDS in infected individuals. In order to evaluate the frequency distribution of CCR5-Δ32 polymorphism among Egyptians, a total of 200 individuals (154 from Ismailia and 46 from Sinai) were tested. Only two heterozygous individuals from Ismailia carried the CCR5-Δ32 allele (0.6%), and no homozygous (Δ32/Δ32) individuals were detected among the tested samples. The presence of the CCR5-Δ32 allele among Egyptians may be attributed to the admixture with people of European descent. Thus we conclude that the protective deletion CCR5-Δ32 is largely absent in the Egyptian population. © 2006 Elsevier B.V. All rights reserved

    Mammalian retroelements

    Get PDF
    The eukaryotic genome has undergone a series of epidemics of amplification of mobile elements that have resulted in most eukaryotic genomes containing much more of this \u27junk\u27 DNA than actual coding DNA. The majority of these elements utilize an RNA intermediate and are termed retroelements. Most of these retroelements appear to amplify in evolutionary waves that insert in the genome and then gradually diverge. In humans, almost half of the genome is recognizably derived from retroelements, with the two elements that are currently actively amplifying, L1 and Alu, making up about 25% of the genome and contributing extensively to disease. The mechanisms of this amplification process are beginning to be understood, although there are still more questions than answers. Insertion of new retroelements may directly damage the genome, and the presence of multiple copies of these elements throughout the genome has longer-term influences on recombination events in the genome and more subtle influences on gene expression

    Modeling human evolution - to tree or not to tree?

    Get PDF

    High frequency of the D allele of the angiotensin-converting enzyme gene in Arabic populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The angiotensin-converting enzyme (ACE) gene in humans has an insertion-deletion (I/D) polymorphic state in intron 16 on chromosome 17q23. This polymorphism has been widely investigated in different populations due to its association with the renin-angiotensin system. However, similar studies for Arab populations are limited. This study addresses the distribution of the ACE gene polymorphism in three Arab populations (Egyptians, Jordanians and Syrians).</p> <p>Findings</p> <p>The polymorphisms of ACE gene were investigated using polymerase chain reaction for detection of an I/D mutation. The results showed a high frequency of the ACE <it>D </it>allele among the three Arab populations, Egyptians (0.67), Jordanians (0.66) and Syrians (0.60), which is similar to those obtained from previous studies for Arab populations.</p> <p>Conclusion</p> <p>The relationship between ACE alleles and disease in these three Arab populations is still not known, but the present results clearly suggest that geographic origin should be carefully considered in the increasing number of studies on the association between ACE alleles and disease etiology. This study adds to the data showing the wide variation in the distribution of the ACE alleles in different populations and highlights that great care needs to be taken when interpreting clinical data on the association of the ACE alleles with different diseases.</p

    From the margins of the genome: Mobile elements shape primate evolution

    Get PDF
    As is the case with mammals in general, primate genomes are inundated with repetitive sequence. Although much of this repetitive content consists of molecular fossils inherited from early mammalian ancestors, a significant portion of this material comprises active mobile element lineages. Despite indications that these elements played a major role in shaping the architecture of the genome, there remain many unanswered questions surrounding the nature of the host-element relationship. Here we review advances in our understanding of the host-mobile element dynamic and its overall impact on primate evolution. © 2005 Wiley Periodicals, Inc

    A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome

    Get PDF
    It is now commonly agreed that the human genome is not the stable entity originally presumed. Deletions, duplications, inversions, and insertions are common, and contribute significantly to genomic structural variations (SVs). Their collective impact generates much of the inter-individual genomic diversity observed among humans. Not only do these variations change the structure of the genome; they may also have functional implications, e.g. altered gene expression. Some SVs have been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are notorious for their genomic instability, and often show genomic rearrangements at the microscopic and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three non-LTR retrotransposon families - long interspersed element 1 (L1), SVA (short interspersed element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements - mobilize in the human genome, and cause genomic instability through both insertion- and post-insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they frequently mislead the homologous recombination repair pathway into non-allelic homologous recombination, causing deletions, duplications, and inversions. While less comprehensively studied, non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible, we provide examples that impact cancer predisposition and/or development. © 2010 Elsevier Ltd

    Mapping Insertions, Deletions and SNPs on Venter's Chromosomes

    Get PDF
    BACKGROUND:The very recent availability of fully sequenced individual human genomes is a major revolution in biology which is certainly going to provide new insights into genetic diseases and genomic rearrangements. RESULTS:We mapped the insertions, deletions and SNPs (single nucleotide polymorphisms) that are present in Craig Venter's genome, more precisely on chromosomes 17 to 22, and compared them with the human reference genome hg17. Our results show that insertions and deletions are almost absent in L1 and generally scarce in L2 isochore families (GC-poor L1+L2 isochores represent slightly over half of the human genome), whereas they increase in GC-rich isochores, largely paralleling the densities of genes, retroviral integrations and Alu sequences. The distributions of insertions/deletions are in striking contrast with those of SNPs which exhibit almost the same density across all isochore families with, however, a trend for lower concentrations in gene-rich regions. CONCLUSIONS:Our study strongly suggests that the distribution of insertions/deletions is due to the structure of chromatin which is mostly open in gene-rich, GC-rich isochores, and largely closed in gene-poor, GC-poor isochores. The different distributions of insertions/deletions and SNPs are clearly related to the two different responsible mechanisms, namely recombination and point mutations

    Reading between the LINEs to see into the past

    Get PDF
    Transposable elements (TEs) are an important source of genome diversity and play a crucial role in genome evolution. A recent study by Zhao et al. describes novel patterns of TE diversification in the genome of the extinct mammoth Mammuthus primigenius. Analysis of Mammuthus has provided a unique genome landscape, a pivotal species for understanding TEs and genome evolution and hints at the diversity we verge on discovering by expanding our taxonomic sampling among genomes. Strategies based on this work might also revolutionize investigations of the interface between TE dynamics and genome diversity. © 2009 Elsevier Ltd. All rights reserved
    • …
    corecore