65 research outputs found

    A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization

    Get PDF
    Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.

    Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data

    Get PDF
    Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an external signal. The model provides the basis of an experimental method to determine the architecture of such pathways, and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ∼80% of the known relationships without any false positives

    Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways

    Get PDF
    Breast cancer is the most aggressive form of all cancers, with high incidence and mortality rates. The purpose of the present study was to investigate the molecular mechanism by which methylsulfonylmethane (MSM) inhibits breast cancer growth in mice xenografts. MSM is an organic sulfur-containing natural compound without any toxicity. In this study, we demonstrated that MSM substantially decreased the viability of human breast cancer cells in a dose-dependent manner. MSM also suppressed the phosphorylation of STAT3, STAT5b, expression of IGF-1R, HIF-1α, VEGF, BrK, and p-IGF-1R and inhibited triple-negative receptor expression in receptor-positive cell lines. Moreover, MSM decreased the DNA-binding activities of STAT5b and STAT3, to the target gene promoters in MDA-MB 231 or co-transfected COS-7 cells. We confirmed that MSM significantly decreased the relative luciferase activities indicating crosstalk between STAT5b/IGF-1R, STAT5b/HSP90α, and STAT3/VEGF. To confirm these findings in vivo, xenografts were established in Balb/c athymic nude mice with MDA-MB 231 cells and MSM was administered for 30 days. Concurring to our in vitro analysis, these xenografts showed decreased expression of STAT3, STAT5b, IGF-1R and VEGF. Through in vitro and in vivo analysis, we confirmed that MSM can effectively regulate multiple targets including STAT3/VEGF and STAT5b/IGF-1R. These are the major molecules involved in tumor development, progression, and metastasis. Thus, we strongly recommend the use of MSM as a trial drug for treating all types of breast cancers including triple-negative cancers

    Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previously published reports have described an effective biocontrol agent named <it>Pseudomonas </it>sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of <it>P. aeruginosa</it>, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures.</p> <p>Results</p> <p>The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved <it>P. aeruginosa </it>core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a <it>capB </it>gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other <it>P. aeruginosa </it>strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of <it>P. aeruginosa </it>strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C.</p> <p>Conclusions</p> <p>The <it>P. aeruginosa </it>strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.</p
    corecore