914 research outputs found

    Spectroscopy of Globular Clusters in M81

    Get PDF
    We present moderate-resolution spectroscopy of globular clusters (GCs) around the Sa/Sb spiral galaxy M81 (NGC 3031). Sixteen candidate clusters were observed with the Low Resolution Imaging Spectrograph on the Keck I telescope. All are confirmed as bona fide GCs, although one of the clusters appears to have been undergoing a transient event during our observations. In general, the M81 globular cluster system (GCS) is found to be very similar to the Milky Way (MW) and M31 systems, both chemically and kinematically. A kinematic analysis of the velocities of 44 M81 GCS, (the 16 presented here and 28 from previous work) strongly suggests that the red, metal-rich clusters are rotating in the same sense as the gas in the disk of M81. The blue, metal-poor clusters have halo-like kinematics, showing no evidence for rotation. The kinematics of clusters whose projected galactocentric radii lie between 4 and 8 kpc suggest that they are rotating much more than those which lie outside these bounds. We suggest that these rotating, intermediate-distance clusters are analogous to the kinematic sub-population in the metal-rich, disk GCs observed in the MW and we present evidence for the existence of a similar sub-population in the metal-rich clusters of M31. With one exception, all of the M81 clusters in our sample have ages that are consistent with MW and M31 GCs. One cluster may be as young as a few Gyrs. The correlations between absorption-line indices established for MW and M31 GCs also hold in the M81 cluster system, at least at the upper end of the metallicity distribution (which our sample probes). On the whole, the mean metallicity of the M81 GCS is similar to the metallicity of the MW and M31 GCSs. The projected mass of M81 is similar to the masses of the MW and M31. Its mass profile indicates the presence of a dark matter halo.Comment: 35 pages, including 11 figures and 9 tables. Accepted for publication in the Astronomical Journa

    The Kinematics and Metallicity of the M31 Globular Cluster System

    Full text link
    With the ultimate aim of distinguishing between various models describing the formation of galaxy halos (e.g. radial or multi-phase collapse, random mergers), we have completed a spectroscopic study of the globular cluster system of M31. We present the results of deep, intermediate-resolution, fibre-optic spectroscopy of several hundred of the M31 globular clusters using the Wide Field Fibre Optic Spectrograph (WYFFOS) at the William Herschel Telescope in La Palma, Canary Islands. These observations have yielded precise radial velocities (+/-12 km/s) and metallicities (+/-0.26 dex) for over 200 members of the M31 globular cluster population out to a radius of 1.5 degrees from the galaxy center. Many of these clusters have no previous published radial velocity or [Fe/H] estimates, and the remainder typically represent significant improvements over earlier determinations. We present analyses of the spatial, kinematic and metal abundance properties of the M31 globular clusters. We find that the abundance distribution of the cluster system is consistent with a bimodal distribution with peaks at [Fe/H] = -1.4 and -0.5. The metal-rich clusters demonstrate a centrally concentrated spatial distribution with a high rotation amplitude, although this population does not appear significantly flattened and is consistent with a bulge population. The metal-poor clusters tend to be less spatially concentrated and are also found to have a strong rotation signature.Comment: 33 pages, 20 figure

    The Chemical Properties of Milky Way and M31 Globular Clusters: I. A Comparative Study

    Full text link
    A comparative analysis is performed between high-quality integrated spectra of 30 globular clusters in M31, 20 Milky Way clusters, and a sample of field and cluster elliptical galaxies. We find that the Lick CN indices in the M31 and Galactic clusters are enhanced relative to the bulges of the Milky Way, M31, and elliptical spheroids. Although not seen in the Lick CN indices, the near-UV cyanogen feature (3883 A) is strongly enhanced in M31 clustesr with respect to the Galactic globulars at metallicities, --1.5<[Fe/H]<--0.3. Carbon shows signs of varying amongst these two groups. For [Fe/H]>--0.8, we observe no siginificant differences in the Hdelta, Hgamma, or Hbeta indices between the M31 and Galactic globulars. The sample of ellipticals lies offset from the loci of all the globulars in the Cyanogen--[MgFe], and Balmer--[MgFe] planes. Six of the M31 cluster spectra appear young, and are projected onto the M31 disk. Population synthesis models suggest that these are metal-rich clusters with ages 100--800 Myr, metallicities --0.20 < [Fe/H] <0.35, and masses 0.7 -7.0x10^4 Msun. Two other young clusters are Hubble V in NGC 205, and an older (~3 Gyr) cluster ~7 kpc away from the plane of the disk. The six clusters projected onto the disk rotate in a similar fashion to the HI gas in M31, and three clusters exhibit thin disk kinematics (Morrison et al.). Dynamical masses and structural parameters are required for these objects to determine whether they are massive open clusters or globular clusters. If the latter, our findings suggest globular clusters may trace the build up of galaxy disks. In either case, we conclude that these clusters are part of a young, metal-rich disk cluster system in M31, possibly as young as 1 Gyr old.Comment: 52 pages, 14 figures, 8 tables, minor revisions in response to referee, conclusions remain the same. Scheduled to appear in the October 2004 issue of The Astronomical Journa

    The M31 Globular Cluster Luminosity Function

    Full text link
    We combine our compilation of photometry of M31 globular cluster and probable cluster candidates with new near-infrared photometry for 30 objects. Using these data we determine the globular cluster luminosity function (GCLF) in multiple filters for the M31 halo clusters. We find a GCLF peak and dispersion of V_0^0=16.84 +/-0.11, sigma_t=0.93 +/- 0.13 (Gaussian sigma = 1.20 +/- 0.14), consistent with previous results. The halo GCLF peak colors (e.g., B^0_0 - V^0_0) are consistent with the average cluster colors. We also measure V-band GCLF parameters for several other subsamples of the M31 globular cluster population. The inner third of the clusters have a GCLF peak significantly brigher than that of the outer clusters (delta V =~ 0.5mag). Dividing the sample by both galacticentric distance and metallicity, we find that the GCLF also varies with metallicity, as the metal-poor clusters are on average 0.36 mag fainter than the metal-rich clusters. Our modeling of the catalog selection effects suggests that they are not the cause of the measured differences, but a more complete, less-contaminated M31 cluster catalog is required for confirmation. Our results imply that dynamical destruction is not the only factor causing variation in the M31 GCLF: metallicity, age, and cluster initial mass function may also be important.Comment: AJ, in press. 36 pages, including 7 figure

    WFPC2 Observations of Massive and Compact Young Star Clusters in M31

    Get PDF
    We present color magnitude diagrams of four blue massive and compact star clusters in M31: G38, G44, G94, and G293. The diagrams of the four clusters reveal a well-populated upper main sequence and various numbers of supergiants. The U-B and B-V colors of the upper main sequence stars are used to determine reddening estimates of the different lines of sight in the M31 disk. Reddening values range from E(B-V) = 0.20 +/- 0.10 to 0.31 +/- 0.11. We statistically remove field stars on the basis of completeness, magnitude and color. Isochrone fits to the field-subtracted, reddening-corrected diagrams yield age estimates ranging from 63 +/- 15 Myr to 160 +/- 60 Myr. Implications for the recent evolution of the disk near NGC 206 are discussed.Comment: 17 pages, Latex, ApJ, in Pres

    Globular clusters in the outer halo of M31: the survey

    Full text link
    We report the discovery of 40 new globular clusters (GCs) that have been found in surveys of the halo of M31 based on INT/WFC and CHFT/Megacam imagery. A subset of these these new GCs are of an extended, diffuse nature, and include those already found in Huxor et al. (2005). The search strategy is described and basic positional and V and I photometric data are presented for each cluster. For a subset of these clusters, K-band photometry is also given. The new clusters continue to be found to the limit of the survey area (~100 kpc), revealing that the GC system of M31 is much more extended than previously realised. The new clusters increase the total number of confirmed GCs in M31 by approximately 10% and the number of confirmed GCs beyond 1 degree (~14 kpc) by more than 75%. We have also used the survey imagery as well recent HST archival data to update the Revised Bologna Catalogue (RBC) of M31 globular clusters.Comment: Accepted to MNRA

    The Specific Globular Cluster Frequencies of Dwarf Elliptical Galaxies from the Hubble Space Telescope

    Full text link
    The specific globular cluster frequencies (S_N) for 24 dwarf elliptical (dE) galaxies in the Virgo and Fornax Clusters and the Leo Group imaged with the Hubble Space Telescope are presented. Combining all available data, we find that for nucleated dEs --- which are spatially distributed like giant ellipticals in galaxy clusters --- S_N(dE,N)=6.5 +- 1.2 and S_N increases with M_V, while for non-nucleated dEs --- which are distributed like late-type galaxies --- S_N(dE,noN)=3.1 +- 0.5 and there is little or no trend with M_V. The S_N values for dE galaxies are thus on average significantly higher than those for late-type galaxies, which have S_N < 1. This suggests that dE galaxies are more akin to giant Es than to late-type galaxies. If there are dormant or stripped irregulars hiding among the dE population, they are likely to be among the non-nucleated dEs. Furthermore, the similarities in the properties of the globular clusters and in the spatial distributions of dE,Ns and giant Es suggest that neither galaxy mass or galaxy metallicity is responsible for high values of S_N. Instead, most metal-poor GCs may have formed in dwarf-sized fragments that merged into larger galaxies.Comment: 12 pages (uses aaspp4.sty), 2 figures, 1 table, to appear in the Astrophysical Journa

    The Globular Cluster Systems of Five Nearby Spiral Galaxies: New Insights from Hubble Space Telescope Imaging

    Full text link
    We use available multifilter Hubble Space Telescope (HST) WFPC2 imaging of five (M81, M83, NGC 6946, M101, and M51) low inclination, nearby spiral galaxies to study ancient star cluster populations. M81 globular clusters (GC) have an intrinsic color distribution which is very similar to those in the Milky Way and M31, with ~40% of the clusters having colors expected for a metal-rich population. On the other hand, the GC system in M51 appears almost exclusively blue and metal poor. This lack of metal-rich GCs associated with the M51 bulge indicates that the bulge formation history of this Sbc galaxy may have differed significantly from that of our own. Ancient clusters in M101, and possibly in NGC 6946, appear to have luminosity distributions which continue to rise to our detection limit (M_V ~ -6.0), well beyond the expected turnover (M_V ~ -7.4) in the luminosity function. This is reminiscent of the situation in M33, a Local Group galaxy of similar Hubble type. The faint ancient cluster candidates in M101 and NGC 6946 have colors and radii similar to their more luminous counterparts, and we suggest that these are either intermediate age (3-9 Gyr) disk clusters or the low mass end of the original GC population. If the faint, excess GC candidates are excluded, we find that the specific frequency (S_N) of ancient clusters formed in later-type spirals is roughly constant, with S_N=0.5 +- 0.2. By combining the results of this study with literature values for other systems, we find that the total GC specific frequencies in spirals appear to correlate best with Hubble type and bulge/total ratio, rather than with galaxy luminosity or galaxy mass (abridged).Comment: 31 pages, 11 tables, 10 figure

    Mariticide in Milan between 1990 and 2017 : a criminological and medico-legal analysis

    Get PDF
    Most murder victims in a romantic relationship are women but sometimes they will kill their husbands or partners (mariticide). This paper focuses on these rarer cases using a sample taken from the autopsy reports of the Department of Legal Medicine of the University of Milan whose territory includes the municipality of Milan and part of the province of Milan and Monza \u2013 approximately four million inhabitants

    A First Look at the Nuclear Region of M31 with Chandra

    Full text link
    We report on the first observation of the nuclear region of M31 with the Chandra X-ray Observatory. The nuclear source seen with the Einstein and ROSAT HRIs is resolved into five point sources. One of these sources is within 1'' of the M31 central super-massive black hole. As compared to the other point sources in M31, this nuclear source has an unusual x-ray spectrum. Based on the spatial coincidence we identify this source with the central black hole, and note that the unusual spectrum is a challenge to current theories. A bright transient is detected ~26'' to the west of the nucleus, which may be associated with a stellar mass black hole.Comment: Submitted to ApJ Letters, 4 pages, 4 figures. email: garcia,ssm,fap,wrf,jem,cjf, @head-cfa.harvard.ed
    • …
    corecore