959 research outputs found

    Scalar Field Theory on Non-commutative Snyder Space-Time

    Full text link
    We construct a scalar field theory on the Snyder non-commutative space-time. The symmetry underlying the Snyder geometry is deformed at the co-algebraic level only, while its Poincar\'e algebra is undeformed. The Lorentz sector is undeformed at both algebraic and co-algebraic level, but the co-product for momenta (defining the star-product) is non-co-associative. The Snyder-deformed Poincar\'e group is described by a non-co-associative Hopf algebra. The definition of the interacting theory in terms of a non-associative star-product is thus questionable. We avoid the non-associativity by the use of a space-time picture based on the concept of realization of a non-commutative geometry. The two main results we obtain are: (i) the generic (namely for any realization) construction of the co-algebraic sector underlying the Snyder geometry and (ii) the definition of a non-ambiguous self interacting scalar field theory on this space-time. The first order correction terms of the corresponding Lagrangian are explicitly computed. The possibility to derive Noether charges for the Snyder space-time is also discussed.Comment: 10 pages; v2: introduction rewritten, co-algebraic analysis improved, references added; to appear in PR

    How can firms in the UK be encouraged to create more value? A discussion and review paper

    Get PDF
    This paper investigates how firms in the UK might be encouraged to create more value through strategic innovation. Our approach is an integrative one, drawing on both the extant literature - covering the value chain, innovation and the low skill/low quality equilibrium debate - and the two systematic reviews completed by the AIM Scholars - covering promising practices and networks. In the paper we argue that there are three basic strategies that firms can adopt to create more value through strategic innovation: Increasing efficiency and effectiveness through the adoption of better practices; Innovating to produce products or services that generate more revenue — through either higher prices or larger volumes — but realised while remaining at the same position in the value chain. Fundamentally changing position in the value chain and moving to a position where the products and services that are being delivered inherently generate more value. We contend that increased value is likely to be created if firms adopt one or more of these three strategies. However, adoption is likely to represent significant challenges to management. Such challenges are linked to the levels of firm competency and their ability to construct, acquire and communicate knowledge during the innovation and subsequent implementation process. Addressing these challenges form the basis of our policy and research implications

    Polymer Quantum Dynamics of the Taub Universe

    Full text link
    Within the framework of non-standard (Weyl) representations of the canonical commutation relations, we investigate the polymer quantization of the Taub cosmological model. The Taub model is analyzed within the Arnowitt-Deser-Misner reduction of its dynamics, by which a time variable arises. While the energy variable and its conjugate momentum are treated as ordinary Heisenberg operators, the anisotropy variable and its conjugate momentum are represented by the polymer technique. The model is analyzed at both classical and quantum level. As a result, classical trajectories flatten with respect to the potential wall, and the cosmological singularity is not probabilistically removed. In fact, the dynamics of the wave packets is characterized by an interference phenomenon, which, however, is not able to stop the evolution towards the classical singularity.Comment: 12 pages, 6 figures; published versio

    Wodzicki Residue for Operators on Manifolds with Cylindrical Ends

    Get PDF
    We define the Wodzicki Residue TR(A) for A in a space of operators with double order (m_1,m_2). Such operators are globally defined initially on R^n and then, more generally, on a class of non-compact manifolds, namely, the manifolds with cylindrical ends. The definition is based on the analysis of the associate zeta function. Using this approach, under suitable ellipticity assumptions, we also compute a two terms leading part of the Weyl formula for a positive selfadjoint operator belonging the mentioned class in the case m_1=m_2.Comment: 24 pages, picture changed, added references, corrected typo

    The Stony Brook / SMARTS Atlas of mostly Southern Novae

    Full text link
    We introduce the Stony Brook / SMARTS Atlas of (mostly) Southern Novae. This atlas contains both spectra and photometry obtained since 2003. The data archived in this atlas will facilitate systematic studies of the nova phenomenon and correlative studies with other comprehensive data sets. It will also enable detailed investigations of individual objects. In making the data public we hope to engender more interest on the part of the community in the physics of novae. The atlas is on-line at \url{http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/} .Comment: 11 figures; 5 table

    ENSO in the Mid-Holocene according to CSM and HadCM3

    Get PDF
    The offline linearized ocean–atmosphere model (LOAM), which was developed to quantify the impact of the climatological mean state on the variability of the El Niño–Southern Oscillation (ENSO), is used to illuminate why ENSO changed between the modern-day and early/mid-Holocene simulations in two climate modeling studies using the NCAR Climate System Model (CSM) and the Hadley Centre Coupled Model, version 3 (HadCM3). LOAM reproduces the spatiotemporal variability simulated by the climate models and shows both the reduction in the variance of ENSO and the changes in the spatial structure of the variance during the early/mid-Holocene. The mean state changes that are important in each model are different and, in both cases, are also different from those hypothesized to be important in the original papers describing these simulations. In the CSM simulations, the ENSO mode is stabilized by the mean cooling of the SST. This reduces atmospheric heating anomalies that in turn give smaller wind stress anomalies, thus weakening the Bjerknes feedback. Within the ocean, a change in the thermocline structure alters the spatial pattern of the variance, shifting the peak variance farther east, but does not reduce the overall amount of ENSO variance. In HadCM3, the ENSO mode is stabilized by a combination of a weaker thermocline and weakened horizontal surface currents. Both of these reduce the Bjerknes feedback by reducing the ocean’s SST response to wind stress forcing. This study demonstrates the importance of considering the combined effect of a mean state change on the coupled ocean–atmosphere system: conflicting and erroneous results are obtained for both models if only one model component is considered in isolation

    Dynamics for a 2-vertex Quantum Gravity Model

    Get PDF
    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N) invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.Comment: 28 pages, v2: typos correcte
    corecore