200 research outputs found

    Clumpy streams in a smooth dark halo: the case of Palomar 5

    Full text link
    By means of direct N-body simulations and simplified numerical models, we study the formation and characteristics of the tidal tails around Palomar 5, along its orbit in the Milky Way potential. Unlike previous findings, we are able to reproduce the substructures observed in the stellar streams of this cluster, without including any lumpiness in the dark matter halo. We show that overdensities similar to those observed in Palomar 5 can be reproduced by the epicyclic motion of stars along its tails, i.e. a simple local accumulation of orbits of stars that escaped from the cluster with very similar positions and velocities. This process is able to form stellar clumps at distances of several kiloparsecs from the cluster, so it is not a phenomenon confined to the inner part of Palomar 5's tails, as previously suggested. Our models can reproduce the density contrast between the clumps and the surrounding tails found in the observed streams, without including any lumpiness in the dark halo, suggesting new upper limits on its granularity.Comment: 6 pages, 7 figures. A&A Letters, accepted. Top panel of Fig. A1 replaced, minor typos corrected. High resolution version available at http://mygepi.obspm.fr/~paola/Pal5

    Are Current Cancer Treatments on Target for Our Ageing Cancer Population?

    Get PDF
    Worldwide the cancer population is ageing – within a decade almost two-thirds of newly diagnosed patients will be aged 65 years and older. Despite this, the majority of oncology clinical trials continue to recruit patients who are younger and fitter than those typically encountered in clinical practice. As such, there is a lack of clinical data to guide management, particularly in those patients living with frailty and/or comorbidity. Importantly, the lack of older adults in trials also means that the subsequent translational work that underpins biomarker and therapeutic discovery may not be relevant to those we see in clinic. In this commentary, we discuss this challenge and the ways we as an Oncology community can look to address this pressing issue

    Are Current Cancer Treatments on Target for Our Ageing Cancer Population?

    Get PDF
    Worldwide the cancer population is ageing – within a decade almost two-thirds of newly diagnosed patients will be aged 65 years and older. Despite this, the majority of oncology clinical trials continue to recruit patients who are younger and fitter than those typically encountered in clinical practice. As such, there is a lack of clinical data to guide management, particularly in those patients living with frailty and/or comorbidity. Importantly, the lack of older adults in trials also means that the subsequent translational work that underpins biomarker and therapeutic discovery may not be relevant to those we see in clinic. In this commentary, we discuss this challenge and the ways we as an Oncology community can look to address this pressing issue

    The distribution of globular clusters in kinematic spaces does not trace the accretion history of the host galaxy

    Full text link
    Reconstructing how all the stellar components of the Galaxy formed and assembled over time, by studying the properties of the stars which make it, is the aim of Galactic archeology. In these last years, thanks to the launch of the ESA Gaia astrometric mission, and the development of many spectroscopic surveys, we are for the first time in the position to delve into the layers of the past of our galaxy. Globular clusters (GCs) play a fundamental role in this research field since they are among the oldest stellar systems in the Milky Way (MW) and so bear witness of its entire past. In the recent years, there have been several attempts to constrain the nature of clusters (accreted or formed in the MW itself) through the analysis of kinematic spaces and to reconstruct from this the properties of the accretions events experienced by the MW through time. This work aims to test a widely-used assumption about the clustering of the accreted populations of GCs in the integrals of motions space. We analyze a set of dissipation-less N-body simulations that reproduce the accretion of one or two satellites with their GC population on a MW-type galaxy. Our results demonstrate that a significant overlap between accreted and "kinematically-heated" in-situ GCs is expected in kinematic spaces, for mergers with mass ratios of 1:10. In contrast with standard assumptions made in the literature so far, we find that accreted GCs do not show dynamical coherence, that is they do not cluster in kinematic spaces. In addition, GCs can also be found in regions dominated by stars which have a different origin (i.e. different progenitor). This casts doubt on the association between GCs and field stars that is generally made in the literature to assign them to a common origin. Our findings severely question the recovered accretion history of the MW based on the phase-space clustering of the GC population.Comment: Submitted to A&A, 23 pages, 13 figure

    NBSymple, a double parallel, symplectic N-body code running on Graphic Processing Units

    Full text link
    We present and discuss the characteristics and performances, both in term of computational speed and precision, of a numerical code which numerically integrates the equation of motions of N 'particles' interacting via Newtonian gravitation and move in an external galactic smooth field. The force evaluation on every particle is done by mean of direct summation of the contribution of all the other system's particle, avoiding truncation error. The time integration is done with second-order and sixth-order symplectic schemes. The code, NBSymple, has been parallelized twice, by mean of the Computer Unified Device Architecture to make the all-pair force evaluation as fast as possible on high-performance Graphic Processing Units NVIDIA TESLA C 1060, while the O(N) computations are distributed on various CPUs by mean of OpenMP Application Program. The code works both in single precision floating point arithmetics or in double precision. The use of single precision allows the use at best of the GPU performances but, of course, limits the precision of simulation in some critical situations. We find a good compromise in using a software reconstruction of double precision for those variables that are most critical for the overall precision of the code. The code is available on the web site astrowww.phys.uniroma1.it/dolcetta/nbsymple.htmlComment: Paper composed by 29 pages, including 9 figures. Submitted to New Astronomy

    EUSO-SPB2 Fluorescence Telescope Calibration and Field Tests

    Full text link
    The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2), successfully launched from Wanaka, New Zealand on May 13, 2022, is a precursor for a space-based astroparticle observatory such as the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). EUSO-SPB2 flew two custom telescopes. Both have UV/UV-visible sensitivity and feature Schmidt optics. The Fluorescence Telescope (FT) measures ultra-high energy cosmic rays by looking down. The \v{C}erenkov Telescope (CT) searches for neutrino signatures by looking toward Earth's limb. The two telescopes each have a 1 m diameter entrance pupil and segmented glass mirrors that collect light from extensive air showers at the PeV and EeV-scale. Here we describe the FT telescope optics together with the results of the FT field tests at the Utah Telescope Array (TA) site from August/September 2022. The FT recorded the night sky background, lasers, and artificial point sources. The field tests included an absolute photometric calibration of the FT telescope that is compared to a piece-wise laboratory calibration

    An increase in the levels of middle surface antigen characterizes patients developing HBV-driven liver cancer despite prolonged virological suppression

    Get PDF
    : Hepatitis B virus (HBV) contains three surface glycoproteins-Large-HBs (L-HBs), Middle-HBs (M-HBs), and Small-HBs (S-HBs), known to contribute to HBV-driven pro-oncogenic properties. Here, we examined the kinetics of HBs-isoforms in virologically-suppressed patients who developed or did not develop hepatocellular carcinoma (HCC). This study enrolled 30 chronically HBV-infected cirrhotic patients under fully-suppressive anti-HBV treatment. Among them, 13 patients developed HCC. Serum samples were collected at enrolment (T0) and at HCC diagnosis or at the last control for non-HCC patients (median (range) follow-up: 38 (12-48) months). Ad-hoc ELISAs were designed to quantify L-HBs, M-HBs and S-HBs (Beacle). At T0, median (IQR) levels of S-HBs, M-HBs and L-HBs were 3140 (457-6995), 220 (31-433) and 0.2 (0-1.7) ng/mL. No significant differences in the fraction of the three HBs-isoforms were noticed between patients who developed or did not develop HCC at T0. On treatment, S-HBs showed a >25% decline or remained stable in a similar proportion of HCC and non-HCC patients (58.3% of HCC- vs. 47.1% of non-HCC patients, p = 0.6; 25% of HCC vs. 29.4% of non-HCC, p = 0.8, respectively). Conversely, M-HBs showed a >25% increase in a higher proportion of HCC compared to non-HCC patients (50% vs. 11.8%, p = 0.02), in line with M-HBs pro-oncogenic role reported in in vitro studies. No difference in L-HBs kinetics was observed in HCC and non-HCC patients. In conclusion, an increase in M-HBs levels characterizes a significant fraction of HCC-patients while under prolonged HBV suppression and stable/reduced total-HBs. The role of M-HBs kinetics in identifying patients at higher HCC risk deserves further investigation

    Whole exome HBV DNA integration is independent of the intrahepatic HBV reservoir in HBeAg-negative chronic hepatitis B

    Get PDF
    The involvement of HBV DNA integration in promoting hepatocarcinogenesis and the extent to which the intrahepatic HBV reservoir modulates liver disease progression remains poorly understood. We examined the intrahepatic HBV reservoir, the occurrence of HBV DNA integration and its impact on the hepatocyte transcriptome in hepatitis B 'e' antigen (HBeAg)-negative chronic hepatitis B (CHB)
    corecore