536 research outputs found

    NuGrid stellar data set - III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03

    Get PDF
    © 2019 Oxford University Press. All rights reserved. The production of the neutron-capture isotopes beyond iron that we observe today in the Solar system is the result of the combined contribution of the r-process, the s-process, and possibly the i-process. Low-mass asymptotic giant branch (AGB) (1.5 10 M☉) stars have been identified as the main site of the s-process. In this work we consider the evolution and nucleosynthesis of low-mass AGB stars. We provide an update of the NuGrid Set models, adopting the same general physics assumptions but using an updated convective-boundary-mixing model accounting for the contribution from internal gravity waves. The combined data set includes the initial masses MZAMS/M☉ = 2, 3 for Z = 0.03, 0.02, 0.01. These new models are computed with the MESA stellar code and the evolution is followed up to the end of the AGB phase. The nucleosynthesis was calculated for all isotopes in post-processing with the NuGrid mppnp code. The convective-boundary-mixing model leads to the formation of a 13C-pocket three times wider compared to the one obtained in the previous set of models, bringing the simulation results now in closer agreement with observations. Using these new models, we discuss the potential impact of other processes inducing mixing, like rotation, adopting parametric models compatible with theory and observations. Complete yield data tables, derived data products, and online analytic data access are provided

    Application of a theory and simulation-based convective boundary mixing model for AGB star evolution and nucleosynthesis

    Get PDF
    The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the ¹³C pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M=2 and M = 3 Mʘ, and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of ¹²C and ¹⁶O are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the ²²Ne(α, n)²⁵Mg activation and the s-process efficiency in the ¹³C-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the ¹³C-pocket with a mass of ≈10⁻⁴ Mʘ. The final s-process abundances are characterized by 0.36 < [s Fe] < 0.78 and the heavy-to-light s-process ratio is -0.23 < [hs ls] < 0.45. Finally, we compare our results with stellar observations, presolar grain measurements and previous work

    The s process in rotating low-mass AGB stars: Nucleosynthesis calculations in models matching asteroseismic constraints

    Get PDF
    Aims. We investigate the s-process during the AGB phase of stellar models whose cores are enforced to rotate at rates consistent with asteroseismology observations of their progenitors and successors. Methods. We calculated new 2 M⊙ , Z  =  0.01 models, rotating at 0, 125, and 250 km s-1 at the start of main sequence. An artificial, additional viscosity was added to enhance the transport of angular momentum in order to reduce the core rotation rates to be in agreement with asteroseismology observations. We compared rotation rates of our models with observed rotation rates during the MS up to the end of core He burning, and the white dwarf phase. Results. We present nucleosynthesis calculations for these rotating AGB models that were enforced to match the asteroseismic constraints on rotation rates of MS, RGB, He-burning, and WD stars. In particular, we calculated one model that matches the upper limit of observed rotation rates of core He-burning stars and we also included a model that rotates one order of magnitude faster than the upper limit of the observations. The s-process production in both of these models is comparable to that of non-rotating models. Conclusions. Slowing down the core rotation rate in stars to match the above mentioned asteroseismic constraints reduces the rotationally induced mixing processes to the point that they have no effect on the s-process nucleosynthesis. This result is independent of the initial rotation rate of the stellar evolution model. However, there are uncertainties remaining in the treatment of rotation in stellar evolution, which need to be reduced in order to confirm our conclusions, including the physical nature of our approach to reduce the core rotation rates of our models, and magnetic processes

    NuGrid stellar data set. 1. Stellar yields from H to Bi for stars with metallicities Z=0.02 and Z=0.01

    Get PDF
    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the ¹³C pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced

    Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation

    Get PDF
    Authors are indebted with Ms Monica Glebocki for extensive editing of the manuscriptBackground: Periodontitis, the most prevalent chronic inflammatory disease, has been related to cardiovascular diseases. Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. The aim of this research was to study the role of autophagy in peripheral blood mononuclear cells from patients with periodontitis and gingival fibroblasts treated with a lipopolysaccharide of Porphyromonas gingivalis. Autophagy-dependent mechanisms have been proposed in the pathogenesis of inflammatory disorders and in other diseases related to periodontitis, such as cardiovascular disease and diabetes. Thus it is important to study the role of autophagy in the pathophysiology of periodontitis. Methods: Peripheral blood mononuclear cells from patients with periodontitis (n = 38) and without periodontitis (n = 20) were used to study autophagy. To investigate the mechanism of autophagy, we evaluated the influence of a lipopolysaccharide from P. gingivalis in human gingival fibroblasts, and autophagy was monitored morphologically and biochemically. Autophagosomes were observed by immunofluorescence and electron microscopy. Results: We found increased levels of autophagy gene expression and high levels of mitochondrial reactive oxygen species production in peripheral blood mononuclear cells from patients with periodontitis compared with controls. A significantly positive correlation between both was observed. In human gingival fibroblasts treated with lipopolysaccharide from P. gingivalis, there was an increase of protein and transcript of autophagy-related protein 12 (ATG12) and microtubule-associated protein 1 light chain 3 alpha LC3. A reduction of mitochondrial reactive oxygen species induced a decrease in autophagy whereas inhibition of autophagy in infected cells increased apoptosis, showing the protective role of autophagy. Conclusion: Results from the present study suggest that autophagy is an important and shared mechanism in other conditions related to inflammation or alterations of the immune system, such as periodontiti

    The s process in rotating low-mass AGB stars. Nucleosynthesis calculations in models matching asteroseismic constraints

    Get PDF
    Aims: We investigate the s-process during the AGB phase of stellar models whose cores are enforced to rotate at rates consisten with asteroseismology observations of their progenitors and successors Methods: We calculated new 2 M☉, Z = 0.01 models rotating at 0, 125, and 250 km s-1 at the start of mai sequence. An artificial, additional viscosity was added to enhance th transport of angular momentum in order to reduce the core rotation rate to be in agreement with asteroseismology observations. We compare rotation rates of our models with observed rotation rates during the M up to the end of core He burning, and the white dwarf phase. Results: We present nucleosynthesis calculations for these rotating AG models that were enforced to match the asteroseismic constraints o rotation rates of MS, RGB, He-burning, and WD stars. In particular, w calculated one model that matches the upper limit of observed rotatio rates of core He-burning stars and we also included a model that rotate one order of magnitude faster than the upper limit of the observations The s-process production in both of these models is comparable to tha of non-rotating models. Conclusions: Slowing down the cor rotation rate in stars to match the above mentioned asteroseismi constraints reduces the rotationally induced mixing processes to th point that they have no effect on the s-process nucleosynthesis. Thi result is independent of the initial rotation rate of the stella evolution model. However, there are uncertainties remaining in th treatment of rotation in stellar evolution, which need to be reduced i order to confirm our conclusions, including the physical nature of ou approach to reduce the core rotation rates of our models, and magneti processes. This paper is dedicated to the celebration of the 100t birthday of Prof. Dr. Margaret Burbidge, in recognition of th outstanding contributions she has made to nuclear astrophysic

    Measurement of the 77Se(n,¿) cross section up to 200 keV at the n_TOF facility at CERN

    Get PDF
    The 77Se(n,¿) reaction is of importance for 77Se abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the 77Se radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT=5keV and kT=100keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in 77Se abundances produced through the slow neutron capture process in selected stellar models of 15M¿ and 2M¿, respectively, compared to using previous recommendation of the cross section.This work was supported by the UK Science and Facilities Council (ST/M006085/1), the MSMT of the Czech Republic, the Charles University UNCE/SCI/013 project, the European Research Council ERC-2015-StG No. 677497, and by the funding agencies of the participating institutes. In line with the principles that apply to scientific publishing and the CERN policy in matters of scientific publications, the n_TOF Col- laboration recognizes the work of Y. Kopatch and V. Furman (JINR, Russia), who have contributed to the experiment used to obtain the results described in this paper.Article signat per 131 autors/es: N. V. Sosnin , C. Lederer-Woods, M. Krtiˇcka, R. Garg, M. Dietz, M. Bacak, M. Barbagallo, U. Battino, S. Cristallo, L. A. Damone, M. Diakaki, S. Heinitz, D. Macina, M. Mastromarco, F. Mingrone, A. St. J. Murphy, G. Tagliente, S. Valenta, D. Vescovi, O. Aberle, V. Alcayne, S. Amaducci, J. Andrzejewski, L. Audouin, V. Bécares, V. Babiano-Suarez, F. Beˇcváˇr, G. Bellia, E. Berthoumieux, J. Billowes, D. Bosnar, A. Brown, M. Busso, M. Caamaño, L. Caballero, F. Calviño, M. Calviani, D. Cano-Ott, A. Casanovas, F. Cerutti, Y. H. Chen, E. Chiaveri, N. Colonna, G. Cortés, M. A. Cortés-Giraldo, L. Cosentino, C. Domingo-Pardo, R. Dressler, E. Dupont, I. Durán, Z. Eleme, B. Fernández-Domínguez, A. Ferrari, P. Finocchiaro, K. Göbel, A. Gawlik-Rami˛ega, S. Gilardoni, T. Glodariu, I. F. Gonçalves, E. González-Romero, C. Guerrero, F. Gunsing, H. Harada, J. Heyse, D. G. Jenkins, E. Jericha, F. Käppeler, Y. Kadi, A. Kimura, N. Kivel, M. Kokkoris, D. Kurtulgil, I. Ladarescu, H. Leeb, J. Lerendegui-Marco, S. Lo Meo, S. J. Lonsdale, A. Manna, T. Martínez, A. Masi, C. Massimi, P. Mastinu, F. Matteucci, E. A. Maugeri, A. Mazzone, E. Mendoza, A. Mengoni, V. Michalopoulou, P. M. Milazzo, A. Musumarra, A. Negret, R. Nolte, F. Ogállar, A. Oprea, N. Patronis, A. Pavlik, J. Perkowski, L. Piersanti, I. Porras, J. Praena, J. M. Quesada, D. Radeck, D. Ramos-Doval, T. Rauscher, R. Reifarth, D. Rochman, C. Rubbia, M. Sabaté-Gilarte, A. Saxena, P. Schillebeeckx, D. Schumann, A. G. Smith, A. Stamatopoulos, J. L. Tain, T. Talip, A. Tarifeño-Saldivia, L. Tassan-Got, P. Torres-Sánchez, A. Tsinganis, J. Ulrich, S. Urlass, G. Vannini, V. Variale, P. Vaz, A. Ventura, V. Vlachoudis, R. Vlastou, A. Wallner, P. J. Woods,T. Wright, and P. Žugec.Postprint (published version
    corecore