81 research outputs found

    Enhancing Jatropha oil extraction yield from the kernels assisted by a xylan-degrading bacterium to preserve protein structure

    Get PDF
    We investigated the use of bacterial cells isolated from paddy crab for the extraction of oil from Jatropha seed kernels in aqueous media while simultaneously preserving the protein structures of this protein-rich endosperm. A bacterial strain—which was marked as MB4 and identified by means of 16S rDNA sequencing and physiological characterization as either Bacillus pumilus or Bacillus altitudinis—enhanced the extraction yield of Jatropha oil. The incubation of an MB4 starter culture with preheated kernel slurry in aqueous media with the initial pH of 5.5 at 37 °C for 6 h liberated 73% w/w of the Jatropha oil. Since MB4 produces xylanases, it is suggested that strain MB4 facilitates oil liberation via degradation of hemicelluloses which form the oil-containing cell wall structure of the kernel. After MB4 assisted oil extraction, SDS-PAGE analysis showed that the majority of Jatropha proteins were preserved in the solid phase of the extraction residues. The advantages offered by this process are: protein in the residue can be further processed for other applications, no purified enzyme preparation is needed, and the resulting oil can be used for biodiesel production

    Integrated modeling in urban hydrology: reviewing the role of monitoring technology in overcoming the issue of ‘big data’ requirements

    Get PDF
    Increasingly, the application of models in urban hydrology has undergone a shift toward integrated structures that recognize the interconnected nature of the urban landscape and both the natural and engineered water cycles. Improvements in computational processing during the past few decades have enabled the application of multiple, connected model structures that link previously disparate systems together, incorporating feedbacks and connections. Many applications of integrated models look to assess the impacts of environmental change on physical dynamics and quality of landscapes. Whilst these integrated structures provide a more robust representation of natural dynamics, they often place considerable data requirements on the user, whereby data are required at contrasting spatial and temporal scales which can often transcend multiple disciplines. Concomitantly, our ability to observe complex, natural phenomena at contrasting scales has improved considerably with the advent of increasingly novel monitoring technologies. This has provided a pathway for reducing model uncertainty and improving our confidence in modeled outputs by implementing suitable monitoring regimes. This commentary assesses how component models of an exemplar integrated model have advanced over the past few decades, with a critical focus on the role of monitoring technologies that have enabled better identification of the key physical process. This reduces the uncertainty of processes at contrasting spatial and temporal scales, through a better characterization of feedbacks which then enhances the utility of integrated model applications

    Role of saprophagous fly biodiversity in ecological processes and urban ecosystem services

    No full text
    Direct consumption of organic matter by the saprophagous larvae provides the ecosystem with a fundamental service by recycling nutrients and reducing exposure to decomposing matter. The present study aimed to assess the functional role of saprophagous flies in the mass loss of different types of decomposing organic matter. Two types of common urban waste were used to measure the role of flies in reducing organic matter: chicken viscera (chicken) and a mixture of flour and uncooked eggs (flour and eggs), representing leftover food. Ten traps baited with each substrate, under field conditions, allowed fly access (exposed to flies) and three traps from each substrate did not (unexposed controls); adult flies entering the traps or emerging from the substrates and substrate mass loss were recorded. Species from Calliphoridae, Sarcophagidae, Muscidae, and Fanniidae families were collected mainly in traps baited with chicken, with Phoridae being the most abundant in traps with flour and eggs as bait. A significantly richer (P < 0.05) assemblage of fly species accessed the traps baited with chicken viscera (21 species) compared with those emerging (11 species), whereas similar numbers of species accessed (n = 5) or emerged (n = 1) from traps baited with flour and eggs (average richness accessing 7.97, emerging 2.83). Chicken substrate mass loss and species richness were positively related (r = 0.56, P = 0.001). In traps where richness was larger than 10 species, the substrates were reduced by more than 85% of their initial weight compared with unexposed controls, which lost 30%. Substrate mass loss significantly increased with the abundance of flies (r = 0.73, P < 0.0001). 4. The results of the present study support the functional role of saprophagous species diversity on the decomposition rates of organic matter, reinforcing the negative consequences of loss or gain of species in modified landscapes and for ecosystem function.Fil: Castelli, Lucas E.. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Gleiser, Raquel M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinar de Biología Vegetal (P). Grupo Vinculado Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales; ArgentinaFil: Battan Horenstein, Moir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinar de Biología Vegetal (P). Grupo Vinculado Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales; Argentin
    corecore