51 research outputs found

    Shannon Information Theory and Molecular Biology

    Get PDF
    The role and the contribution of Shannon Information Theory to the development of Molecular Biology has been the object of stimulating debates during the last thirty years. This seems to be connected with some semantic charms associated with the use of the word \u201cinformation\u201d in the biological context. Furthermore information itself, if viewed in a broader perspective, is far from being completely defined in a fashion that overcomes the technical level at which the classical Information Theory has been conceived. This review aims at building on the acknowledged contribution of Shannon Information Theory to Molecular Biology, so as to discover if it is only a technical tool to analyze DNA and proteinic sequences, or if it can rise, at least in perspective, to a higher role that exerts an influence on the construction of a suitable model for handling the genetic information in Molecular Biology

    Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics

    Get PDF
    As a portable source of food, water, fuel, and construction materials, the coconut (Cocos nucifera L.) played a fundamental role in human migrations and the development of civilization across the humid tropics. Here we investigated the coconut's domestication history and its population genetic structure as it relates to human dispersal patterns. A sample of 1,322 coconut accessions, representing the geographical and phenotypic diversity of the species, was examined using ten microsatellite loci. Bayesian analyses reveal two highly genetically differentiated subpopulations that correspond to the Pacific and Indo-Atlantic oceanic basins. This pattern suggests independent origins of coconut cultivation in these two world regions, with persistent population structure on a global scale despite long-term human cultivation and dispersal. Pacific coconuts show additional genetic substructure corresponding to phenotypic and geographical subgroups; moreover, the traits that are most clearly associated with selection under human cultivation (dwarf habit, self-pollination, and “niu vai” fruit morphology) arose only in the Pacific. Coconuts that show evidence of genetic admixture between the Pacific and Indo-Atlantic groups occur primarily in the southwestern Indian Ocean. This pattern is consistent with human introductions of Pacific coconuts along the ancient Austronesian trade route connecting Madagascar to Southeast Asia. Admixture in coastal east Africa may also reflect later historic Arab trading along the Indian Ocean coastline. We propose two geographical origins of coconut cultivation: island Southeast Asia and southern margins of the Indian subcontinent

    Global Taxonomic Diversity of Anomodonts (Tetrapoda, Therapsida) and the Terrestrial Rock Record Across the Permian-Triassic Boundary

    Get PDF
    The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth's history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates

    La phylogenie des Cynodontes gomphodontes

    No full text
    L’etude anatomique des formes du sommet du Trias inférieur amène á considérer que les Cynodontes gomphodontes comportent deux lignées principales dérivant ďun ancêtre commun, une lignée conduisant aux Traversodontidae, et une lignée conduisant aux Diademodontidae et Trirachodontidae.The anatomical study of Late Early Triassic forms leads to consider that the gomphodont cynodonts are split into two major lineages deriving from a common ancestor, one lineage comprising the Traversodontiadae, and the other comprising the Diademodontidae and Trirachodontidae

    Generation of monoclonal antibodies to native human immunodeficiency virus type 1 envelope glycoprotein by immunization of mice with naked RNA.

    No full text
    International audienceThe Semliki Forest virus (SFV) vector system is a new approach for in vivo expression of heterologous proteins and can also be used to generate specific immune responses in animal models. HIV-1 envelope glycoprotein produced using the SFV expression system is correctly folded, cleaved, transported to the cell surface and exhibits functional activity. We evaluated a recombinant Semliki Forest virus naked RNA-based immunization protocol for generation of monoclonal antibodies against the HIV-1 envelope glycoprotein. In vitro-transcribed RNA encoding for the SFV replicase complex and Env protein of HIV-1 (HXB2 strain) was injected intramuscularly to mice. This approach elicited an Env-specific antibody response in four mice out of five and a monoclonal antibody, 12H2, directed against gp41 was produced. Our results show that recombinant SFV RNA immunization can potentially be used as a quick and direct method to produce monoclonal antibodies, with the particular advantage that vectored RNA, rather than purified antigen, delivers a complex oligomer produced correctly.The Semliki Forest virus (SFV) vector system is a new approach for in vivo expression of heterologous proteins and can also be used to generate specific immune responses in animal models. HIV-1 envelope glycoprotein produced using the SFV expression system is correctly folded, cleaved, transported to the cell surface and exhibits functional activity. We evaluated a recombinant Semliki Forest virus naked RNA-based immunization protocol for generation of monoclonal antibodies against the HIV-1 envelope glycoprotein. In vitro-transcribed RNA encoding for the SFV replicase complex and Env protein of HIV-1 (HXB2 strain) was injected intramuscularly to mice. This approach elicited an Env-specific antibody response in four mice out of five and a monoclonal antibody, 12H2, directed against gp41 was produced. Our results show that recombinant SFV RNA immunization can potentially be used as a quick and direct method to produce monoclonal antibodies, with the particular advantage that vectored RNA, rather than purified antigen, delivers a complex oligomer produced correctly

    New dicynodonts (Therapsida, Anomodontia) from near the Permo-Triassic boundary of Laos: implications for dicynodont survivorship across the Permo-Triassic mass extinction and the paleobiogeography of Southeast Asian blocks

    No full text
    The dicynodonts are an emblematic group of herbivorous therapsids that survived the Permo-Triassic (P-Tr) crisis. Laotian dicynodonts from stratigraphically constrained beds, recently dated using the U-Pb zircon method, yield new insights into terrestrial faunas of Southeast Asia during the latest Permian and earliest Triassic. Summarily described, they were originally attributed to the genus Dicynodon. We provide a new phylogenetic analysis for Laotian dicynodonts, based on three well-preserved skulls, indicating that they belong to two new taxa: Counillonia superoculis, gen. et sp. nov., and Repelinosaurus robustus, gen. et sp. nov. Our phylogenetic analysis of Dicynodontia indicates that (1) Counillonia is closely related to some ‘Dicynodon’-grade taxa and (2) Repelinosaurus is a kannemeyeriiform. The phylogenetic affinities of these new Laotian dicynodonts allow discussion of the survivorship of multiple lineages (Kannemeyeriiformes and ‘Dicynodon’-grade dicynodontoids) across the P-Tr crisis. The Laotian dicynodonts also shed new light on the paleobiogeography of Southeast Asia from the late Paleozoic to the early Mesozoic, particularly the timing of collisions between the Indochina, the South China, and the North China blocks. The presence of dicynodonts in Laos, most likely in the Early Triassic, thus implies that the connection between the Indochina Block and the South China Block occurred no later than the latest Permian or earliest Triassic (i.e., when the dicynodonts provide direct evidence for a connection)

    Localization of hepatitis B surface antigen epitopes present on variants and specifically recognised by anti-hepatitis B surface antigen monoclonal antibodies

    No full text
    Small hepatitis B surface antigen (HBsAg) is considered to be the best marker for the diagnosis of Hepatitis B virus infection. However, HBsAg variants with mutations within the "a" determinant may be poorly or not detected by diagnostic assays. Three anti-HBsAg monoclonal antibodies (6H6B6, 27E7F10, and 2G2G10), directed against conformational epitopes, were tested for their ability to detect the wild-type HBsAg as well as variant forms and their respective epitopes were localised on the HBsAg sequence by using the phage-displayed peptide library technology. Whereas 6H6B6 did not detect mutations T123N, S143L, D144A and G145R, 27E7F10 binding was affected by mutations P120T and G145R. In contrast, 2G2G10 reacted strongly with all tested variants including variant with the G145R mutation. Part of the 6H6B6 epitope was located in the major hydrophilic region (MHR) at residues 101-105, the 27E7F10 epitope (residues 214-219) was located near the C-terminal end of the antigen and the 2G2G10 epitope at residues 199-208, within the theoretical fourth transmembrane helix. The 2G2G10 epitope localisation brings information about the HBsAg structure and the validity of established topological models. Finally, 2G2G10 is a valuable tool for HBsAg variant detection that is used as capture phase in a new bioMérieux diagnostic assay, which is currently in development
    corecore