2,766 research outputs found

    Reweighting of the form factors in exclusive B --> X ell nu decays

    Full text link
    A form factor reweighting technique has been elaborated to permit relatively easy comparisons between different form factor models applied to exclusive B --> X l nu decays. The software tool developped for this purpose is described. It can be used with any event generator, three of which were used in this work: ISGW2, PHSP and FLATQ2, a new powerful generator. The software tool allows an easy and reliable implementation of any form factor model. The tool has been fully validated with the ISGW2 form factor hypothesis. The results of our present studies indicate that the combined use of the FLATQ2 generator and the form factor reweighting tool should play a very important role in future exclusive |Vub| measurements, with largely reduced errors.Comment: accepted for publication by EPJ

    Monitoring of the biodegradation of toluene-contaminated sand in columns by SIP measurements, CO2 content and its 13C/12C isotopic signature.

    No full text
    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Bioremediation uses the ability of bacteria naturally present in the ground to degrade hydrocarbons. It represents an effective solution to fight the pollution but in situ monitoring before and during soil treatment is difficult and challenging. Indeed, where significant subsurface heterogeneity exists, conventional intrusive groundwater sampling can be insufficient to obtain a robust monitoring as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information, complementary methods can be used like geo-electrical techniques. Induced polarization (IP) seems to be the more promising to study the effects of biodegradation processes. Indeed, laboratory and field experiments have shown an enhancement of real and imaginary parts of electrical conductivity while bacterial treatment is progressing (Abdel Aal et al., 2006 ; Atekwana et Atekwana, 2010). Moreover, microbial activity induced CO2 production and isotopic deviation of carbon (Aggarwal and Hinchee, 1991). The ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). From these findings, the French project BIOPHY, supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop a non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Laboratory experiments in columns are carried out to demonstrate its feasibility. Our objectives were to monitor aerobic microbial activity in toluene-contaminated sand columns using complex electrical resistivity measurements (SIP, Spectral Induced polarization and GEIS, Galvanostatic Electrochemical Impedance Spectroscopy) and measuring concentration and δ13C isotopic ratio of produced CO2

    Amperometric cytochrome c3-based biosensor for chromate determination

    Get PDF
    International audienceThe chromate reductase activity of cytochrome c3 (Cyt c3, Mr 13 000), isolated from the sulfate-reducing bacterium Desulfomicrobium norvegicum, was used to develop an amperometric biosensor to measure chromate (CrO42−) bioavailability. The performance of various biosensor configurations for qualitative and quantitative determination of Cr(VI) was studied. Biosensor properties depend on the technique used to immobilize the enzyme on the electrode (glassy carbon electrode). Immobilization of Cyt c3 by entrapment in poly 3,4-ethylenedioxythiophene films denatured the enzyme, while application of an adsorption technique did not affect enzyme activity but the detection range was limited. The best results were obtained with dialysis membranes, which allowed the determination of Cr(VI) from 0.20 to 6.84 mg l−1 (3.85–132 μM) with a sensitivity of 35 nA mg−1 l (1.82 nA μM−1). No interference was observed with As(V), As(III) and Fe(III). Only a small amount of Cyt c3 (372 ng of protein) was needed for this biosensor

    Development of an enzymatic amperometric biosensor using cytochromes C3 for the fast quantification of chromate bio-availability in the environment.

    Get PDF
    International audienceThe presence of toxic Heavy Metals and Metalloids (HMM) in the environment greatly affects the quality of water, soil and chain-food. The toxicity of the HMM depends on metal availability. Many analytical methods, such as sequential extraction or mathematical modelling, have been used for a long time for the assessment of HMM bioavailability. However, these techniques are very often difficult, expensive and long. The biosensors, like analytical tools, have advantages while bringing in addition to specificity, fast and quantitative measurement of a metal that reacts with the biomaterial. This principle is applied to detect the presence of bio-available concentrations of certain metals. The biosensor presented in this study is an amperometric one and its sensitive part is a hemo-protein, the cytochrome c3 from Desulfomicrobium norvegicum. The cytochrome c3 has been chosen for its better properties as a reducing agent of chromate (CrO42-). This study required instrumental developments or adaptations: the development of glassy carbon electrode with immobilized cytochrome c3 and the implementation of electrochemical methods for the study of redox systems, i.e. cyclic voltammetry (CV) and chronoamperometry (CA). The performances of various configurations of biosensors, according to the mode of immobilization of the enzyme, are studied for the qualitative and quantitative determination of chromate. These tools made it possible to identify and follow the redox reactions taking place during the contact of the electrode without and with chromate in solution. The tests on the various configurations of electrode allowed us, for the moment, to choose two promising configurations: The first one is an immobilization of the enzyme with a dialysis membrane and the second is an immobilization with a cellulose nitrate filter. Chromate concentrations from 0.2 to 6.8 mg/L can be detected by the biosensors that were designed

    Characterization and mobility of arsenic and heavy metalsinsoils polluted by the destruction of arsenic-containingshells from the Great War

    No full text
    International audienceDestruction of chemical munitions from World War I has caused extensive local top soil contamination by arsenic and heavy metals. The biogeochemical behavior of toxic elements is poorly documented in this type of environment. Four soils were sampled presenting different levels of contamination. The range of As concentrations in the samples was 1937–72,820 mg/kg. Concentrations of Zn, Cu and Pb reached 90,190 mg/kg, 9113 mg/kg and 5777 mg/kg, respectively. The high clay content of the subsoil and large amounts of charcoal from the use of firewood during the burning process constitute an ample reservoir of metals and As-binding materials. However, SEM–EDS observations showed different forms of association for metals and As. In metal-rich grains, several phases were identified: crystalline phases, where arsenate secondary minerals were detected, and an amorphous phase rich in Fe, Zn, Cu, and As. The secondary arsenate minerals, identified by XRD, were adamite and olivenite (zinc and copper arsenates, respectively) and two pharmacosiderites. The amorphous material was the principal carrier of As and metals in the central part of the site. This singular mineral assemblage probably resulted from the heat treatment of arsenic-containing shells. Microbial characterization included total cell counts, respiration, and determination of As(III)-oxidizing activities. Results showed the presence of microorganisms actively contributing to metabolism of carbon and arsenic, even in the most polluted soil, thereby influencing the fate of bioavailable As on the site. However, the mobility of As correlated mainly with the availability of iron sinks

    Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thiomonas </it>strains are ubiquitous in arsenic-contaminated environments. Differences between <it>Thiomonas </it>strains in the way they have adapted and respond to arsenic have never been studied in detail. For this purpose, five <it>Thiomonas </it>strains, that are interesting in terms of arsenic metabolism were selected: <it>T. arsenivorans</it>, <it>Thiomonas </it>spp. WJ68 and 3As are able to oxidise As(III), while <it>Thiomonas </it>sp. Ynys1 and <it>T. perometabolis </it>are not. Moreover, <it>T. arsenivorans </it>and 3As present interesting physiological traits, in particular that these strains are able to use As(III) as an electron donor.</p> <p>Results</p> <p>The metabolism of carbon and arsenic was compared in the five <it>Thiomonas </it>strains belonging to two distinct phylogenetic groups. Greater physiological differences were found between these strains than might have been suggested by 16S rRNA/<it>rpoA </it>gene phylogeny, especially regarding arsenic metabolism. Physiologically, <it>T. perometabolis </it>and Ynys1 were unable to oxidise As(III) and were less arsenic-resistant than the other strains. Genetically, they appeared to lack the <it>aox </it>arsenic-oxidising genes and carried only a single <it>ars </it>arsenic resistance operon. <it>Thiomonas arsenivorans </it>belonged to a distinct phylogenetic group and increased its autotrophic metabolism when arsenic concentration increased. Differential proteomic analysis revealed that in <it>T. arsenivorans</it>, the <it>rbc</it>/<it>cbb </it>genes involved in the assimilation of inorganic carbon were induced in the presence of arsenic, whereas these genes were repressed in <it>Thiomonas </it>sp. 3As.</p> <p>Conclusion</p> <p>Taken together, these results show that these closely related bacteria differ substantially in their response to arsenic, amongst other factors, and suggest different relationships between carbon assimilation and arsenic metabolism.</p

    Efficacité de biofilms de bactéries As-oxydantes pour l'étape de traitement biologique d'eaux potabilisables arséniées

    No full text
    L'arsenic est un métalloïde toxique dont la présence, relativement fréquente, dans les eaux et les sols est liée soit au fond géochimique, soit aux activités humaines. En ce qui concerne les eaux destinées à la consommation, la législation impose une concentration maximale en arsenic de 10 µg.L-1. Les effets nocifs de l'arsenic sur la santé humaine rendent nécessaire le développement de technologies efficaces et peu couteuse pour éliminer cet élément des eaux potables, ainsi que dans les aquifères pollués et dans les effluents miniers (Wang et Zhao, 2009). Une unité de traitement biologique d'eaux potabilisable faiblement arséniée (As< 50µg/L), couplée à une unité de piégeage de l'As en sortie du bioréacteur, a été mise en œuvre sur un site réel afin d'étudier la robustesse du bioprocédé. Un bioréacteur contenant de la pouzzolane (matériau utilisé dans les traitements d'eaux) a été préalablement ensemencé par une souche bactérienne As(III) oxydante autotrophe (Thiomonas arsenivorans) (Battaglia-Brunet et al., 2002, Michon et al., 2010 ; Wan et al., 2010) puis alimenté par l'eau issue du forage à température ambiante (15-17°C) avec un fonctionnement discontinu (asservissement de l'alimentation du bioréacteur à la pompe du forage d'alimentation en eau). Le suivi du développement du biofilm As(III) oxydant au cours du traitement biologique a été réalisé par la recherche des gènes codant pour l'ARNr 16S (diversité bactérienne totale) et ceux codant pour une arsénite oxydase (aoxB) (diversité des bactéries As(III)-oxydantes). Ce suivi a montré une colonisation rapide et stable du support minéral par des bactéries endogènes de l'eau à traiter. Le rendement d'oxydation de l'étape d'oxydation biologique est compris entre 54 et 100 % avec des temps de séjour de 30 minutes à 7 minutes qui sont comparables à des temps de séjour de techniques classiques de traitement. Les concentrations résiduelles en As en sortie du procédé complet (oxydation biologique + piégeage) sont inférieures à 1 µg/L, et qui sont donc très encourageants pour une application industrielle

    Dynamics of Bacterial Communities Mediating the Treatment of an As-Rich Acid Mine Drainage in a Field Pilot

    Get PDF
    Passive treatment based on iron biological oxidation is a promising strategy for Arsenic (As)-rich acid mine drainage (AMD) remediation. In the present study, we characterized by 16S rRNA metabarcoding the bacterial diversity in a field-pilot bioreactor treating extremely As-rich AMD in situ, over a 6 months monitoring period. Inside the bioreactor, the bacterial communities responsible for iron and arsenic removal formed a biofilm (“biogenic precipitate”) whose composition varied in time and space. These communities evolved from a structure at first similar to the one of the feed water used as an inoculum to a structure quite similar to the natural biofilm developing in situ in the AMD. Over the monitoring period, iron-oxidizing bacteria always largely dominated the biogenic precipitate, with distinct populations (Gallionella, Ferrovum, Leptospirillum, Acidithiobacillus, Ferritrophicum), whose relative proportions extensively varied among time and space. A spatial structuring was observed inside the trays (arranged in series) composing the bioreactor. This spatial dynamic could be linked to the variation of the physico-chemistry of the AMD water between the raw water entering and the treated water exiting the pilot. According to redundancy analysis (RDA), the following parameters exerted a control on the bacterial communities potentially involved in the water treatment process: dissolved oxygen, temperature, pH, dissolved sulfates, arsenic and Fe(II) concentrations and redox potential. Appreciable arsenite oxidation occurring in the bioreactor could be linked to the stable presence of two distinct monophylogenetic groups of Thiomonas related bacteria. The ubiquity and the physiological diversity of the bacteria identified, as well as the presence of bacteria of biotechnological relevance, suggested that this treatment system could be applied to the treatment of other AMD

    Hydraulic retention time affects bacterial community structure in an As-rich acid mine drainage (AMD) biotreatment process.

    Get PDF
    Arsenic removal consecutive to biological iron oxidation and precipitation is an effective process for treating As-rich acid mine drainage (AMD). We studied the effect of hydraulic retention time (HRT)-from 74 to 456 min-in a bench-scale bioreactor exploiting such process. The treatment efficiency was monitored during 19 days, and the final mineralogy and bacterial communities of the biogenic precipitates were characterized by X-ray absorption spectroscopy and high-throughput 16S rRNA gene sequencing. The percentage of Fe(II) oxidation (10-47%) and As removal (19-37%) increased with increasing HRT. Arsenic was trapped in the biogenic precipitates as As(III)-bearing schwertmannite and amorphous ferric arsenate, with a decrease of As/Fe ratio with increasing HRT. The bacterial community in the biogenic precipitate was dominated by Fe-oxidizing bacteria whatever the HRT. The proportion of Gallionella and Ferrovum genera shifted from respectively 65 and 12% at low HRT to 23 and 51% at high HRT, in relation with physicochemical changes in the treated water. aioA genes and Thiomonas genus were detected at all HRT although As(III) oxidation was not evidenced. To our knowledge, this is the first evidence of the role of HRT as a driver of bacterial community structure in bioreactors exploiting microbial Fe(II) oxidation for AMD treatment
    corecore