1,941 research outputs found

    Future constraints on halo thermodynamics from combined Sunyaev-Zel'dovich measurements

    Full text link
    The improving sensitivity of measurements of the kinetic Sunyaev-Zel'dovich (SZ) effect opens a new window into the thermodynamic properties of the baryons in halos. We propose a methodology to constrain these thermodynamic properties by combining the kinetic SZ, which is an unbiased probe of the free electron density, and the thermal SZ, which probes their thermal pressure. We forecast that our method constrains the average thermodynamic processes that govern the energetics of galaxy evolution like energetic feedback across all redshift ranges where viable halos sample are available. Current Stage-3 cosmic microwave background (CMB) experiments like AdvACT and SPT-3G can measure the kSZ and tSZ to greater than 100σ\sigma if combined with a DESI-like spectroscopic survey. Such measurements translate into percent-level constraints on the baryonic density and pressure profiles and on the feedback and non-thermal pressure support parameters for a given ICM model. This in turn will provide critical thermodynamic tests for sub-grid models of feedback in cosmological simulations of galaxy formation. The high fidelity measurements promised by the next generation CMB experiment, CMB-S4, allow one to further sub-divide these constraints beyond redshift into other classifications, like stellar mass or galaxy type.Comment: 11 pages, 3 figures, Accepted to JCA

    Functional and neural mechanisms of human fear conditioning: studies in healthy and brain-damaged individuals

    Get PDF
    Fear conditioning represents the learning process by which a stimulus, after repeated pairing with an aversive event, comes to evoke fear and becomes intrinsically aversive. This learning is essential to organisms throughout the animal kingdom and represents one the most successful laboratory paradigm to reveal the psychological processes that govern the expression of emotional memory and explore its neurobiological underpinnings. Although a large amount of research has been conducted on the behavioural or neural correlates of fear conditioning, some key questions remain unanswered. Accordingly, this thesis aims to respond to some unsolved theoretic and methodological issues, thus furthering our understanding of the neurofunctional basis of human fear conditioning both in healthy and brain-damaged individuals. Specifically, in this thesis, behavioural, psychophysiological, lesion and non-invasive brain stimulation studies were reported. Study 1 examined the influence of normal aging on context-dependent recall of extinction of fear conditioned stimulus. Study 2 aimed to determine the causal role of the ventromedial PFC (vmPFC) in the acquisition of fear conditioning by systematically test the effect of bilateral vmPFC brain-lesion. Study 3 aimed to interfere with the reconsolidation process of fear memory by the means of non-invasive brain stimulation (i.e. TMS) disrupting PFC neural activity. Finally, Study 4 aimed to investigate whether the parasympathetic – vagal – modulation of heart rate might reflect the anticipation of fearful, as compared to neutral, events during classical fear conditioning paradigm. Evidence reported in this PhD thesis might therefore provide key insights and deeper understanding of critical issues concerning the neurofunctional mechanisms underlying the acquisition, the extinction and the reconsolidation of fear memories in humans

    The Kinematic Sunyaev-Zel'dovich Effect with Projected Fields II: prospects, challenges, and comparison with simulations

    Full text link
    The kinematic Sunyaev-Zel'dovich (kSZ) signal is a powerful probe of the cosmic baryon distribution. The kSZ signal is proportional to the integrated free electron momentum rather than the electron pressure (which sources the thermal SZ signal). Since velocities should be unbiased on large scales, the kSZ signal is an unbiased tracer of the large-scale electron distribution, and thus can be used to detect the "missing baryon" that evade most observational techniques. While most current methods for kSZ extraction rely on the availability of very accurate redshifts, we revisit a method that allows measurements even in the absence of redshift information for individual objects. It involves cross-correlating the square of an appropriately filtered cosmic microwave background (CMB) temperature map with a projected density map constructed from a sample of large-scale structure tracers. We show that this method will achieve high signal-to-noise when applied to the next generation of high-resolution CMB experiments, provided that component separation is sufficiently effective at removing foreground contamination. Considering statistical errors only, we forecast that this estimator can yield S/N≈S/N \approx 3, 120 and over 150 for Planck, Advanced ACTPol, and hypothetical Stage-IV CMB experiments, respectively, in combination with a galaxy catalog from WISE, and about 20% larger S/NS/N for a galaxy catalog from the proposed SPHEREx experiment. This work serves as a companion paper to the first kSZ measurement with this method, where we used CMB temperature maps constructed from Planck and WMAP data, together with galaxies from the WISE survey, to obtain a 3.8 - 4.5σ\sigma detection of the kSZ2^2 amplitude.Comment: 14 pages, 10 figures. Comments welcom

    The Kinematic Sunyaev-Zel'dovich Effect with Projected Fields: A Novel Probe of the Baryon Distribution with Planck, WMAP, and WISE Data

    Full text link
    The kinematic Sunyaev-Zel'dovich (kSZ) effect --- the Doppler boosting of cosmic microwave background (CMB) photons due to Compton-scattering off free electrons with non-zero bulk velocity --- probes the abundance and distribution of baryons in the Universe. All kSZ measurements to date have explicitly required spectroscopic redshifts. Here, we implement a novel estimator for the kSZ -- large-scale structure cross-correlation based on projected fields: it does not require redshift estimates for individual objects, allowing kSZ measurements from large-scale imaging surveys. We apply this estimator to cleaned CMB temperature maps constructed from Planck and Wilkinson Microwave Anisotropy Probe data and a galaxy sample from the Wide-field Infrared Survey Explorer (WISE). We measure the kSZ effect at 3.8-4.5σ\sigma significance, depending on the use of additional WISE galaxy bias constraints. We verify that our measurements are robust to possible dust emission from the WISE galaxies. Assuming the standard Λ\LambdaCDM cosmology, we directly constrain (fb/0.158)(ffree/1.0)=1.48±0.19( {f_{b}}/{0.158} ) ( {f_{\rm free}}/{1.0} ) = 1.48 \pm 0.19 (statistical error only) at redshift z≈0.4z \approx 0.4, where fbf_{b} is the fraction of matter in baryonic form and ffreef_{\rm free} is the free electron fraction. This is the tightest kSZ-derived constraint reported to date on these parameters. The consistency between the fbf_{b} value found here and the values inferred from analyses of the primordial CMB and Big Bang nucleosynthesis verifies that baryons approximately trace the dark matter distribution down to ∼\simMpc scales. While our projected-field estimator is already competitive with other kSZ approaches when applied to current datasets (because we are able to use the full-sky WISE photometric survey), it will yield enormous signal-to-noise when applied to upcoming high-resolution, multi-frequency CMB surveys.Comment: 5 pages + references, 2 figures; v2: matches PRL accepted version, results unchange

    Editorial: Insights into structural and functional organization of the brain: evidence from neuroimaging and non-invasive brain stimulation techniques

    Get PDF
    The brain is a complex and dynamic system that underlies our behavior, emotions, and cognition (1–3). To better understand the structural and functional organization of the brain, neuroimaging and brain stimulation techniques have emerged as powerful tools (Nyatega et al.) (4–9)

    Improved Modeling of the Kinematic Sunyaev-Zel'dovich Projected-Fields signal and its Cosmological Dependence

    Full text link
    Over the past decade, the kinematic Sunyaev-Zel'dovich (kSZ) effect has emerged as an observational probe of the distribution of baryons and velocity fields in the late Universe. Of the many ways to detect the kSZ, the 'projected-fields kSZ estimator' has the promising feature of not being limited to galaxy samples with accurate redshifts. The current theoretical modeling of this estimator involves an approximate treatment only applicable at small scales. As the measurement fidelity rapidly improves, we find it necessary to move beyond the original treatment and hence derive an improved theoretical model for this estimator without these previous approximations. We show that the differences between the predicted signal from the two models are scale-dependent and will be significant for future measurements from the Simons Observatory and CMB-S4 in combination with galaxy data from WISE or the Rubin Observatory, which have high forecasted signal-to-noise ratios (>100>100). Thus, adopting our improved model in future analyses will be important to avoid biases. Equipped with our model, we explore the cosmological dependence of this kSZ signal for future measurements. With a Planck prior, residual uncertainty on Λ\LambdaCDM parameters leads to ∼7%\sim7\% marginalized uncertainties on the signal amplitude, compared to a sub-percent level forecasted with a fixed cosmology. To illustrate the potential of this kSZ estimator as a cosmological probe, we forecast initial constraints on Λ\LambdaCDM parameters and the sum of neutrino masses, paving the way for jointly fitting both baryonic astrophysics and cosmology in future analyses.Comment: 18 pages, 6 figures, submitted to Phys. Rev.

    Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background

    Full text link
    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (tSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but can be detected at enormous significance (≳1000σ\gtrsim 1000\sigma) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise to 230σ230\sigma, this measurement will still yield a sub-percent constraint on the total thermal energy of electrons in the observable universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged tSZ signal at 30σ30\sigma, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and temperature in the mean tSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.Comment: 4.5 pages + references, 2 figures, comments welcome; v2: references updated; v3: matches PRL accepted versio

    W-FYD: a Wearable Fabric-based Display for Haptic Multi-Cue Delivery and Tactile Augmented Reality

    Get PDF
    Despite the importance of softness, there is no evidence of wearable haptic systems able to deliver controllable softness cues. Here, we present the Wearable Fabric Yielding Display (W-FYD), a fabric-based display for multi-cue delivery that can be worn on user's finger and enables, for the first time, both active and passive softness exploration. It can also induce a sliding effect under the finger-pad. A given stiffness profile can be obtained by modulating the stretching state of the fabric through two motors. Furthermore, a lifting mechanism allows to put the fabric in contact with the user's finger-pad, to enable passive softness rendering. In this paper, we describe the architecture of W-FYD, and a thorough characterization of its stiffness workspace, frequency response and softness rendering capabilities. We also computed device Just Noticeable Difference in both active and passive exploratory conditions, for linear and non-linear stiffness rendering as well as for sliding direction perception. The effect of device weight was also considered. Furthermore, performance of participants and their subjective quantitative evaluation in detecting sliding direction and softness discrimination tasks are reported. Finally, applications of W-FYD in tactile augmented reality for open palpation are discussed, opening interesting perspectives in many fields of human-machine interaction

    The spatial effect of fearful faces in the autonomic response

    Get PDF
    Peripersonal space (PPS) corresponds to the space around the body and it is defined by the location in space where multimodal inputs from bodily and external stimuli are integrated. Its extent varies according to the characteristics of external stimuli, e.g. the salience of an emotional facial expression. In the present study, we investigated the psycho-physiological correlates of the extension phenomenon. Specifically, we investigated whether an approaching human face showing either an emotionally negative (fearful) or positive (joyful) facial expression would differentially modulate PPS representation, compared to the same face with a neutral expression. To this aim, we continuously recorded the skin conductance response (SCR) of 27 healthy participants while they watched approaching 3D avatar faces showing fearful, joyful or neutral expressions, and then pressed a button to respond to tactile stimuli delivered on their cheeks at three possible delays (visuo-tactile trials). The results revealed that the SCR to fearful faces, but not joyful or neutral faces, was modulated by the apparent distance from the participant\u2019s body. SCR increased from very far space to far and then to near space. We propose that the proximity of the fearful face provided a cue to the presence of a threat in the environment and elicited a robust and urgent organization of defensive responses. In contrast, there would be no need to organize defensive responses to joyful or neutral faces and, as a consequence, no SCR differences were found across spatial positions. These results confirm the defensive function of PPS
    • …
    corecore