18 research outputs found

    Patient-derived mutations within the N-terminal domains of p85α impact PTEN or Rab5 binding and regulation

    Get PDF
    The p85α protein regulates flux through the PI3K/PTEN signaling pathway, and also controls receptor trafficking via regulation of Rab-family GTPases. In this report, we determined the impact of several cancer patient-derived p85α mutations located within the N-terminal domains of p85α previously shown to bind PTEN and Rab5, and regulate their respective functions. One p85α mutation, L30F, significantly reduced the steady state binding to PTEN, yet enhanced the stimulation of PTEN lipid phosphatase activity. Three other p85α mutations (E137K, K288Q, E297K) also altered the regulation of PTEN catalytic activity. In contrast, many p85α mutations reduced the binding to Rab5 (L30F, I69L, I82F, I177N, E217K), and several impacted the GAP activity of p85α towards Rab5 (E137K, I177N, E217K, E297K). We determined the crystal structure of several of these p85α BH domain mutants (E137K, E217K, R262T E297K) for bovine p85α BH and found that the mutations did not alter the overall domain structure. Thus, several p85α mutations found in human cancers may deregulate PTEN and/or Rab5 regulated pathways to contribute to oncogenesis. We also engineered several experimental mutations within the p85α BH domain and identified L191 and V263 as important for both binding and regulation of Rab5 activit

    Primary processes in sensory cells: current advances

    Get PDF

    Protein aggregation: Cause, mechanism and consequences for neurodegenerative disorders

    No full text

    Crystal structure of p44, a constitutively active splice variant of visual arrestin

    No full text
    Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V-VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the 'constitutive activity' found in arrestin variants

    Structural studies of PI3K SH3 domain in complex with a peptide ligand: role of anchor residue in ligand binding

    No full text
    Src homology 3 (SH3) domains are mediators of protein-protein interactions. They comprise approximately 60 amino acid residues and are found in many intracellular signaling proteins. Here, we present the crystal structure of the SH3 domain from phosphatidylinositol 3-kinase (PI3K) in complex with the 12-residue proline-rich peptide PD1R (HSKRPLPPLPSL). The crystal structure of the PI3K SH3-PD1R complex at a resolution of 1.7 A reveals type I ligand orientation of the bound peptide with an extended conformation where the central portion forms a left-handed type II polyproline (PPII) helix. The overall structure of the SH3 domain shows minimal changes on ligand binding. In addition, we also attempted crystallization with another peptide ligand (PD1) where the residue at anchor position P(-3) is a tyrosine. The crystals obtained did not contain the PD1 ligand; instead, the ligand binding site is partially occupied by residues Arg18 and Trp55 from the symmetry-related PI3K SH3 molecule. Considering these crystal structures of PI3K SH3 together with published reports, we provide a comparative analysis of protein-ligand interactions that has helped us identify the individual residues which play an important role in defining target specificity

    Glutamic acid-rich proteins of rod photoreceptors are natively unfolded

    Get PDF
    Broadly neutralizing HIV antibodies (bNAbs) can recognize carbohydrate-dependent epitopes on gp120. In contrast to previously characterized glycan-dependent bNAbs that recognize high-mannose N-glycans, PGT121 binds complex-type N-glycans in glycan microarrays. We isolated the B-cell clone encoding PGT121, which segregates into PGT121-like and 10-1074-like groups distinguished by sequence, binding affinity, carbohydrate recognition, and neutralizing activity. Group 10-1074 exhibits remarkable potency and breadth but no detectable binding to protein-free glycans. Crystal structures of unliganded PGT121, 10-1074, and their likely germ-line precursor reveal that differential carbohydrate recognition maps to a cleft between complementarity determining region (CDR)H2 and CDRH3. This cleft was occupied by a complex-type N-glycan in a "liganded" PGT121 structure. Swapping glycan contact residues between PGT121 and 10-1074 confirmed their importance for neutralization. Although PGT121 binds complex-type N-glycans, PGT121 recognized high-mannose-only HIV envelopes in isolation and on virions. As HIV envelopes exhibit varying proportions of high-mannose- and complex-type N-glycans, these results suggest promiscuous carbohydrate interactions, an advantageous adaptation ensuring neutralization of all viruses within a given strain
    corecore