9 research outputs found

    Meson-Meson Interactions and Resonances in the 't Hooft Model

    Full text link
    We studied meson-meson interactions using the 't Hooft model, which represents QCD in 1+1 dimensions and assumes a large number of colors (NcN_c). The dominant interactions in this large NcN_c limit are generated by quark exchange. Our results show that QCD in 1+1 dimensions allows the realization of a constituent-type quark model for the mesons, and generates a scalar ``σ\sigma''-like meson-meson resonance, whose effective coupling and mass are determined by the underlying QCD dynamics. These results suggest an interpretation of the lightest scalar mesons as qqˉqqˉq\bar{q} q \bar{q} systems.Comment: 19 pages, 8 figures, accepted for publication in PR

    Gravitational coupling to two-particle bound states and momentum conservation in deep inelastic scattering

    Full text link
    The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two 1+1 dimensional examples, it shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantilly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent

    Pole Term and Gauge Invariance in Deep Inelastic Scattering

    Get PDF
    In this paper we reconcile two contradictory statements about deep inelastic scattering (DIS) in manifestly covariant theories: (i) the scattering must be gauge invariant, even in the deep inelastic limit, and (ii) the pole term (which is not gauge invariant in a covariant theory) dominates the scattering amplitude in the deep inelastic limit. An ``intermediate'' answer is found to be true. We show that, at all energies, the gauge dependent part of the pole term cancels the gauge dependent part of the rescattering term, so that both the pole and rescattering terms can be separately redefined in a gauge invariant fashion. The resulting, redefined pole term is then shown to dominate the scattering in the deep inelastic limit. Details are worked out for a simple example in 1+1 dimensions.Comment: 10 figure

    Early changes in Orthopteran assemblages after grassland restoration : a comparison of space-for-time substitution versus repeated-measures monitoring

    Get PDF
    Grasslands harbour significant biodiversity and their restoration is a common intervention in biodiversity conservation. However, we know very little on how grassland restoration influences arthropod groups. Here we compared orthopteran assemblages in croplands, natural grasslands and one to four-year-old grasslands restored in a large-scale restoration on former croplands in Hortobágy National Park (E-Hungary). Sampling was done by standardized sweep-netting both in a repeated measures design and space-for-time substitution (chronosequence) design. General linear models with repeated measures from five years showed that species richness, abundance and Shannon diversity of orthopterans decreased in the year following restoration but increased afterwards. By the fourth year, species richness almost doubled and abundance increased almost ten-fold in restored grasslands compared to croplands. Multivariate analyses showed that species composition in the first two years did not progress much but by the third and fourth year there was partial overlap with natural grasslands. Local restoration conditions (last crop, seed mixture) and landscape configuration (proportion of natural grasslands < 1 km away) did not influence the above patterns in either the repeated measures or the chronosequence design, whereas time since restoration affected almost all community variables. Our results suggest that generalist ubiquitous species appeared in restored grasslands first and the more sensitive species colonized the restored fields gradually in later years. The qualitative and quantitative properties of the orthopteran assemblages in restored fields did not yet reach those of natural grasslands, therefore, our study suggests that the full regeneration of the orthopteran assemblages takes more than four years
    corecore