11 research outputs found

    Lack of predictive tools for conventional and targeted cancer therapy:barriers to biomarker development and clinical translation

    Get PDF
    Predictive tools, utilising biomarkers, aim to objectively assess the potential response to a particular clinical intervention in order to direct treatment. Conventional cancer therapy remains poorly served by predictive biomarkers, despite being the mainstay of treatment for most patients. In contrast, targeted therapy benefits from a clearly defined protein target for potential biomarker assessment. We discuss potential data sources of predictive biomarkers for conventional and targeted therapy, including patient clinical data and multi-omic biomarkers (genomic, transcriptomic and protein expression). Key examples, either clinically adopted or demonstrating promise for clinical translation, are highlighted. Following this, we provide an outline of potential barriers to predictive biomarker development; broadly discussing themes of approaches to translational research and study/trial design, and the impact of cellular and molecular tumor heterogeneity. Future avenues of research are also highlighted

    Circulating tumour cell expression of immune-markers as prognostic and therapeutic biomarkers in head and neck squamous cell carcinoma:a systematic review and meta-analysis

    Get PDF
    Rates of loco-regional recurrence and distant metastasis remain high among head and neck squamous cell carcinoma (HNSCC) patients, despite advancing cancer treatment modalities and therapeutic agents. One area that has generated considerable interest is the immune landscape of the tumour, heralding a wave of immune checkpoint inhibitors with notable efficacy in recurrent/metastatic HNSCC patients. However, HNSCC remains poorly served by biomarkers that can direct treatment in a personalised fashion to target the tumour heterogeneity seen between patients. Detection and analysis of circulating tumour cells (CTCs) in HNSCC has provided a previously unseen view of the metastasis forming cells that are potentially contributing to poor clinical outcomes. In particular, identifying CTC expression of phenotypic and druggable protein markers has allowed CTC sub-populations to be defined that hold prognostic value or are potential therapeutic targets themselves. The aim of this systematic review was to examine the role of CTC immune-marker expression as prognostic/therapeutic biomarkers in HNSCC by evaluating progress to date and discussing areas for future research. Our results highlight how few studies have been able to demonstrate prognostic significance of immune-marker expression in CTCs. As expected, the immune checkpoint PD-L1 was the most widely investigated marker. However, no studies evaluated CTC target immune marker expression in immunotherapy cohorts. Despite these findings, the data presented demonstrate promise that CTCs may be a source of future biomarkers for immunotherapy and will provide valuable information regarding the potential immune evasion of these metastasis forming cells

    Circulating tumour DNA detects somatic variants contributing to spatial and temporal intratumural heterogeneity in head and neck squamous cell carcinoma

    Get PDF
    Background: As circulating tumour DNA (ctDNA) liquid biopsy analysis is increasingly incorporated into modern oncological practice, establishing the impact of genomic intra-tumoural heterogeneity (ITH) upon data output is paramount. Despite advances in other cancer types the evidence base in head and neck squamous cell carcinoma (HNSCC) remains poor. We sought to investigate the utility of ctDNA to detect ITH in HNSCC.Methods: In a pilot cohort of 9 treatment-naïve HNSCC patients, DNA from two intra-tumoural sites (core and margin) was whole-exome sequenced. A 9-gene panel was designed to perform targeted sequencing on pre-treatment plasma cell-free DNA and selected post-treatment samples.Results: Rates of genomic ITH among the 9 patients was high. COSMIC variants from 19 TCGA HNSCC genes demonstrated an 86.9% heterogeneity rate (present in one tumour sub-site only). Across all patients, cell-free DNA (ctDNA) identified 12.9% (range 7.5-19.8%) of tumour-specific variants, of which 55.6% were specific to a single tumour sub-site only. CtDNA identified 79.0% (range: 55.6-90.9%) of high-frequency variants (tumour VAF>5%). Analysis of ctDNA in serial post-treatment blood samples in patients who suffered recurrence demonstrated dynamic changes in both tumour-specific and acquired variants that predicted recurrence ahead of clinical detection.Conclusion: We demonstrate that a ctDNA liquid biopsy identified spatial genomic ITH in HNSCC and reliably detected high-frequency driver mutations. Serial sampling allowed post-treatment surveillance and early identification of treatment failure

    Immediate sample fixation increases Circulating Tumour Cell (CTC) capture and preserves phenotype in head and neck squamous cell carcinoma:towards a standardised approach to microfluidic CTC biomarker discovery

    No full text
    SIMPLE SUMMARY: Circulating tumour cells (CTCs) have shown potential to act as markers of disease and prognosis in head and neck squamous cell carcinoma (HNSCC). However, there are a number of methods and devices reported to isolate and characterise CTCs. Translating CTC markers to clinical practice, for patient benefit, requires a reliable, reproducible and standardised approach. We report the benefit of the Parsortix microfluidic CTC enrichment platform in HNSCC. We demonstrate consistent cell capture rates between 10 and 100 cells/mL of whole blood. Analysis of gene expression with unfixed cells before and after Parsortix enrichment demonstrated a cell stress response and downregulation of key genes. We highlight the benefit of using a fixative blood collection tube (Transfix) to increase cell capture rate and preserve the CTC marker expression profile. Such evidence is crucial when designing sample processing protocols for large cohort multi-centre clinical trials investigating CTCs in any cancer type. ABSTRACT: Introduction: Research demonstrates strong evidence that circulating tumour cells (CTCs) can provide diagnostic and/or prognostic biomarkers in head and neck squamous cell carcinoma (HNSCC) and a potential tool for therapeutic stratification. However, the question still remains as to the optimum method of CTC enrichment and how this can be translated into clinical practice. We aimed to evaluate the Parsortix microfluidic device for CTC enrichment and characterisation in HNSCC, seeking to optimise a sample collection and processing protocol that preserves CTC integrity and phenotype. Method: Spiking experiments of the FaDu and SCC040 HNSCC cell lines were used to determine the Parsortix capture rate of rare “CTC-like” cells. Capture rates of cancer cells spiked into EDTA blood collections tubes (BCTs) were compared to the Transfix fixative BCT and Cytodelics whole blood freezing protocol. The Lexogen Quantseq library preparation was used to profile gene expression of unfixed cells before and after microfluidic enrichment and enriched cell line spiked Transfix blood samples. An antibody panel was optimised to enable immunofluorescence microscopy CTC detection in HNSCC patient Transfix blood samples, using epithelial (EpCAM) and mesenchymal (N-cadherin) CTC markers. Results: Across a spiked cell concentration range of 9–129 cells/mL, Parsortix demonstrated a mean cell capture rate of 53.5% for unfixed cells, with no significant relationship between spiked cell concentration and capture rate. Samples preserved in Transfix BCTs demonstrated significantly increased capture rates at 0 h (time to processing) compared to EDTA BCTs (65.3% vs. 51.0%). Capture rates in Transfix BCTs were maintained at 24 h and 72 h timepoints, but dropped significantly in EDTA BCTs. Gene expression profiling revealed that microfluidic enrichment of unfixed cell lines caused downregulation of RNA processing/binding gene pathways and upregulation of genes involved in cell injury, apoptosis and oxidative stress. RNA was successfully extracted and sequenced from Transfix preserved cells enriched using Parsortix, demonstrating epithelial specific transcripts from spiked cells. In a proof-of-concept cohort of four patients with advanced HNSCC, CTCs were successfully identified and visualised with epithelial and epithelial-mesenchymal phenotypes. Conclusion: We have optimised a protocol for detection of CTCs in HNSCC with the Parsortix microfluidic device, using Transfix BCTs. We report a significant benefit, both in terms of cell capture rates and preserving cell phenotype, for using a fixative BCT- particularly if samples are stored before processing. In the design of large cohort multi-site clinical trials, such data are of paramount importance

    Development and external validation of nomograms in oropharyngeal cancer patients with known HPV-DNA status: a European Multicentre Study (OroGrams)

    Get PDF
    BACKGROUND:The proxy marker for human papillomavirus (HPV), p16, is included in the new AJCC 8th/UICC 8th staging system, but due to incongruence between p16 status and HPV infection, single biomarker evaluation could lead to misallocation of patients. We established nomograms for overall survival (OS) and progression-free survival (PFS) in patients with oropharyngeal squamous cell carcinoma (OPSCC) and known HPV-DNA and p16 status, and validated the models in cohorts from high- and low-prevalent HPV countries. METHODS:Consecutive OPSCC patients treated in Denmark, 2000-2014 formed the development cohort. The validation cohorts were from Sweden, Germany, and the United Kingdom. We developed nomograms by applying a backward-selection procedure for selection of variables, and assessed model performance. RESULTS:In the development cohort, 1313 patients, and in the validation cohorts, 344 German, 503 Swedish and 463 British patients were included. For the OS nomogram, age, gender, combined HPV-DNA and p16 status, smoking, T-, N-, and M-status and UICC-8 staging were selected, and for the PFS nomogram the same variables except UICC-8 staging. The nomograms performed well in discrimination and calibration. CONCLUSIONS:Our nomograms are reliable prognostic methods in patients with OPSCC. Combining HPV DNA and p16 is essential for correct prognostication. The nomograms are available at www.orograms.org

    Developing and validating a multivariable prognostic-predictive classifier for treatment escalation of oropharyngeal squamous cell carcinoma:the PREDICTR-OPC study

    Get PDF
    PurposeWhile there are several prognostic classifiers, to date, there are no validated predictive models that inform treatment selection for oropharyngeal squamous cell carcinoma (OPSCC).Our aim was to develop clinical and/or biomarker predictive models for patient outcome and treatment escalation for OPSCC.Experimental designWe retrospectively collated clinical data and samples from a consecutive cohort of OPSCC cases treated with curative intent at ten secondary care centers in United Kingdom and Poland between 1999 and 2012. We constructed tissue microarrays, which were stained and scored for 10 biomarkers. We then undertook multivariable regression of eight clinical parameters and 10 biomarkers on a development cohort of 600 patients. Models were validated on an independent, retrospectively collected, 385-patient cohort.ResultsA total of 985 subjects (median follow-up 5.03 years, range: 4.73-5.21 years) were included. The final biomarker classifier, comprising p16 and survivin immunohistochemistry, high-risk human papillomavirus (HPV) DNA in situ hybridization, and tumor-infiltrating lymphocytes, predicted benefit from combined surgery + adjuvant chemo/radiotherapy over primary chemoradiotherapy in the high-risk group [3-year overall survival (OS) 63.1% vs. 41.1%, respectively, HR = 0.32; 95% confidence interval (CI), 0.16-0.65; P = 0.002], but not in the low-risk group (HR = 0.4; 95% CI, 0.14-1.24; P = 0.114). On further adjustment by propensity scores, the adjusted HR in the high-risk group was 0.34, 95% CI = 0.17-0.67, P = 0.002, and in the low-risk group HR was 0.5, 95% CI = 0.1-2.38, P = 0.384. The concordance index was 0.73.ConclusionsWe have developed a prognostic classifier, which also appears to demonstrate moderate predictive ability. External validation in a prospective setting is now underway to confirm this and prepare for clinical adoption
    corecore