3 research outputs found

    Spatio-Temporal Variability of Malaria Incidence in the Health District of Kati, Mali, 2015–2019

    No full text
    Introduction: Despite the implementation of control strategies at the national scale, the malaria burden remains high in Mali, with more than 2.8 million cases reported in 2019. In this context, a new approach is needed, which accounts for the spatio-temporal variability of malaria transmission at the local scale. This study aimed to describe the spatio-temporal variability of malaria incidence and the associated meteorological and environmental factors in the health district of Kati, Mali. Methods: Daily malaria cases were collected from the consultation records of the 35 health areas of Kati’s health district, for the period 2015–2019. Data on rainfall, relative humidity, temperature, wind speed, the normalized difference vegetation index, air pressure, and land use–land cover were extracted from open-access remote sensing sources, while data on the Niger River’s height and flow were obtained from the National Department of Hydraulics. To reduce the dimension and account for collinearity, strongly correlated meteorological and environmental variables were combined into synthetic indicators (SI), using a principal component analysis. A generalized additive model was built to determine the lag and the relationship between the main SIs and malaria incidence. The transmission periods were determined using a change-point analysis. High-risk clusters (hotspots) were detected using the SatScan method and were ranked according to risk level, using a classification and regression tree analysis. Results: The peak of the malaria incidence generally occurred in October. Peak incidence decreased from 60 cases per 1000 person–weeks in 2015, to 27 cases per 1000 person–weeks in 2019. The relationship between the first SI (river flow and height, relative humidity, and rainfall) and malaria incidence was positive and almost linear. A non-linear relationship was found between the second SI (air pressure and temperature) and malaria incidence. Two transmission periods were determined per year: a low transmission period from January to July—corresponding to a persisting transmission during the dry season—and a high transmission period from July to December. The spatial distribution of malaria hotspots varied according to the transmission period. Discussion: Our study confirmed the important variability of malaria incidence and found malaria transmission to be associated with several meteorological and environmental factors in the Kati district. The persistence of malaria during the dry season and the spatio-temporal variability of malaria hotspots reinforce the need for innovative and targeted strategies

    Sub-national tailoring of seasonal malaria chemoprevention in Mali based on malaria surveillance and rainfall data

    No full text
    International audienceBackground: In malaria endemic countries, seasonal malaria chemoprevention (SMC) interventions are performed during the high malaria transmission in accordance with epidemiological surveillance data. In this study we propose a predictive approach for tailoring the timing and number of cycles of SMC in all health districts of Mali based on sub-national epidemiological surveillance and rainfall data. Our primary objective was to select the best of two approaches for predicting the onset of the high transmission season at the operational scale. Our secondary objective was to evaluate the number of malaria cases, hospitalisations and deaths in children under 5 years of age that would be prevented annually and the additional cost that would be incurred using the best approach.Methods: For each of the 75 health districts of Mali over the study period (2014-2019), we determined (1) the onset of the rainy season period based on weekly rainfall data; (ii) the onset and duration of the high transmission season using change point analysis of weekly incidence data; and (iii) the lag between the onset of the rainy season and the onset of the high transmission. Two approaches for predicting the onset of the high transmission season in 2019 were evaluated.Results: In the study period (2014-2019), the onset of the rainy season ranged from week (W) 17 (W17; April) to W34 (August). The onset of the high transmission season ranged from W25 (June) to W40 (September). The lag between these two events ranged from 5 to 12 weeks. The duration of the high transmission season ranged from 3 to 6 months. The best of the two approaches predicted the onset of the high transmission season in 2019 to be in June in two districts, in July in 46 districts, in August in 21 districts and in September in six districts. Using our proposed approach would prevent 43,819 cases, 1943 hospitalisations and 70 deaths in children under 5 years of age annually for a minimal additional cost. Our analysis shows that the number of cycles of SMC should be changed in 36 health districts.Conclusion: Adapting the timing of SMC interventions using our proposed approach could improve the prevention of malaria cases and decrease hospitalisations and deaths. Future studies should be conducted to validate this approach

    Stratification at the health district level for targeting malaria control interventions in Mali

    No full text
    International audienceMalaria is the leading cause of morbidity and mortality in Mali. Between 2017 and 2020, the number of cases increased in the country, with 2,884,827 confirmed cases and 1454 reported deaths in 2020. We performed a malaria risk stratification at the health district level in Mali with a view to proposing targeted control interventions. Data on confirmed malaria cases were obtained from the District Health Information Software 2, data on malaria prevalence and mortality in children aged 6-59 months from the 2018 Demographic and Health Survey, entomological data from Malian research institutions working on malaria in the sentinel sites of the National Malaria Control Program (NMCP), and environmental data from the National Aeronautics and Space Administration. A stratification of malaria risk was performed. Targeted malaria control interventions were selected based on spatial heterogeneity of malaria incidence, malaria prevalence in children, vector resistance distribution, health facility usage, child mortality, and seasonality of transmission. These interventions were discussed with the NMCP and the different funding partners. In 2017-2019, median incidence across the 75 health districts was 129.34 cases per 1000 person-years (standard deviation = 86.48). Risk stratification identified 12 health districts in very low transmission areas, 19 in low transmission areas, 20 in moderate transmission areas, and 24 in high transmission areas. Low health facility usage and increased vector resistance were observed in high transmission areas. Eight intervention combinations were selected for implementation. Our work provides an updated risk stratification using advanced statistical methods to inform the targeting of malaria control interventions in Mali. This stratification can serve as a template for continuous malaria risk stratifications in Mali and other countries
    corecore