6 research outputs found

    Light concentration solar cell: temperature proper and dynamic effects on electrical parameters determined by using J-V and P-V characteristics

    Get PDF
    The solar cell is assumed to be under light concentration (C=50 Suns) which leads us to take into consideration the electric field induced by electrons concentration gradient. We also take into consideration temperature influence on electron and hole diffusion parameters, on carrier generation rate, on carrier intrinsic concentration and on silicon energy gap. It emerges from results analysis that increase in temperature leads to decrease of open-circuit voltage and the photovoltaic parameters at the maximum power point (MPP) such as electric power, photo-voltage and photocurrent with however a slight increase of short-circuit photocurrent density. It also appears that temperature has a double effect on electrical parameters. The temperature dynamic effect which is characterized by parameters variations linked to operating point displacement caused by temperature variations. And the temperature proper effect which is characterized by parameters variation with temperature at a given operating point. Thus, the combination of these two effects represents temperature effective effect

    Effect of Incidence Angle Varying from 0 rad to π/2 rad and Intensity of Radio Waves on the Performance of a Silicon Solar Cell

    No full text
    In this work, a one dimensional approach is presented for modelling the effect of the incidence angle, varying from 0 rad to π/2 rad, and the intensity of radio waves on the performance of a polycrystalline silicon solar cell under constant multispectral illumination. By solving the continuity equation in steady state, we derived the expression of the density of excess minority carriers, the photocurrent density, the photovoltage, the electric power and their dependence on the incidence angle and the intensity of the electromagnetic field is analyzed. Using the electric power curves versus junction dynamic velocity we determined the electric power lost at the junction, the maximum electric power and we calculated the conversion efficiency for various incidence angle and intensity of the electromagnetic field. The leakage photocurrent density, deduced from the photocurrent density curves versus junction dynamic velocity, and the electric power lost at the junction allowed us to calculate the shunt resistance of the solar cell according to the incidence angle and the intensity of the electromagnetic field. The numerical data show the negative effect of radios waves on the performance of a silicon solar cell

    Effect of light intensity on the performance of silicon solar cell

    Get PDF
    This work, presents the intense light effect on electrical parameters of silicon solar such as short circuit current, open circuit voltage, series and shunt resistances, maximum power, conversion efficiency, fill factor. After the resolution of the continuity equation which leads to the solar cell photocurrent and photovoltage expressions, we use the J/V characteristic to determine the solar cell series and shunt resistances. The maximum electric power of the solar cell is determined using the curves of electric power versus junction dynamic velocity, and then, the fill factor and conversion efficiency are calculated. Light concentration and junction dynamic velocity effects on solar cell short circuit current, open circuit voltage, series and shunt resistances, electric power, fill factor and conversion efficiency are also studied. The study proved that with increase of illumination light intensity, the solar cell shunt resistances decreases whereas series resistance, short circuit current, open circuit voltage, electric power, fill factor and conversion efficiency increases.Keywords: Light concentration, series resistance, shunt resistance, electric power, fill factor, Conversion efficienc

    Performance Investigation of a Silicon Photovoltaic Module under the Influence of a Magnetic Field

    No full text
    Aside from the terrestrial magnetic field that is generated from the earth core, power transmission, and distribution lines, transformers and other equipment do produce a certain amount of magnetic field that could interfere with the performance of photovoltaic modules. This study conducted an experiment and investigated the performance of a silicon photovoltaic module subjected to a magnetic field. The current-voltage and power-voltage characteristics were plotted in the same axis system and allowed us to find, as a function of the magnetic field, the electrical parameters of the photovoltaic module such as maximum electric power, fill factor, conversion efficiency, and charge resistance at the maximum power point. These electrical parameters were then used to calculate the series and shunt resistances of the equivalent circuit of the photovoltaic module. The results have shown that the efficiency of a solar module is affected by the presence of magnetic fields. However, the magnitude of ambient magnetic field generated by power transmissions lines and other equipment is extremely low (in the order of 10−2 mT or less) as compared to the values of the magnetic field used in this study. That made it difficult to conclude as to the impact of such field on solar photovoltaic installations

    Propagation of Electromagnetic Wave into an Illuminated Polysilicon PV Cell

    No full text
    The increasing cohabitation between telecommunication antennas generating electromagnetic waves and solar panels poses the problem of interaction between these radio waves and solar cells. In order to study the effect of radio waves on the performance of a polycrystalline silicon solar cell in a three-dimensional approach, it is necessary to assess the attenuation of the radio wave in the illuminated polysilicon grain and also to find the expressions of its components. This work investigated the attenuation of radio waves into a polycrystalline silicon grain by analyzing, firstly, the behaviour of the penetration length of the radio waves into the polysilicon grain and secondly, the behaviour of the attenuation factor. The propagation of the radio waves into the polycrystalline silicon grain can be considered without attenuation that can be neglected

    Study of Aerosol Impact on the Solar Potential Available in Burkina Faso, West Africa

    No full text
    This paper is an assessment of aerosols impact on solar potential available in Burkina Faso in 2017. Three measurement stations were selected from the North to the South according to the climatic zones, with sites at Dori (14.035°N, 0.034°W) in the North, Ouagadougou (12.20°N, 1.40°W) in the Center and Gaoua (10.29°N, 3.25°W) in the Southwest, respectively. This study is based on in-situ measurements, satellite observations and a tropospheric standard model of the Streamer radiative transfer code of atmospheric particles. The results show a high availability of solar irradiation with average monthly values ranging between 4.46 kWh/m²/d and 6.82 kWh/m²/d. The most favorable periods with maximum radiation are observed in Spring in March and in Fall in October. Yet, the qualitative comparison between the evolution of aerosols and that of solar potential clearly shows aerosols capacity to influence the radiation at the crossing of the atmosphere. Thus, the aerosols maxima correspond to the solar potential minima. Moreover, a comparison between the day cycles of solar radiation and those of the simulation model shows a good accuracy of the Streamer code to estimate the solar flows at the surface in a standard atmosphere without clouds in Burkina Faso.However, a quantification of the aerosol impact by the Streamer code reveals a reduction in the normal direct flow compared to clear days defined by aerosol optical depth (AOD) less than 0.2 (AOD<0.2) of nearly 75.04% at the Dori site in the North, 57.33% at the Ouagadougou site in the Center and 40.89 % at the Gaoua site in the Southwest during polluted days corresponding to AOD higher than 0.8.This corresponds to an increase in the diffuse flow of 279.69 W/m², 246.05 W/m² and 226.09 W/m², respectively calculated on the same sites. In case of a mixed day (0.2 <AOD <0.8), this decrease in direct solar flow is estimated at 41.25%, 22.11% and 37.13% with an increasein the diffuse solar flux of 115.04 W/m², 150.43 W/m² and 79.58 W/m² at the sites of Dori, Ouagadougou and Gaoua, respectively
    corecore