86 research outputs found

    Wavelet-Based Multi-Resolution Statistics for Optical Imaging Signals: Application to Automated Detection of Odour Activated Glomeruli in the Mouse Olfactory Bulb

    Get PDF
    Optical imaging techniques offer powerful solutions to capture brain networks processing in animals, especially when activity is distributed in functionally distinct spatial domains. Despite the progress in imaging techniques, the standard analysis procedures and statistical assessments for this type of data are still limited. In this paper, we perform two in vivo non-invasive optical recording techniques in the mouse olfactory bulb, using a genetically expressed activity reporter fluorescent protein (synaptopHfluorin) and intrinsic signals of the brain. For both imaging techniques, we show that the odour-triggered signals can be accurately parameterized using linear models. Fitting the models allows us to extract odour specific signals with a reduced level of noise compared to standard methods. In addition, the models serve to evaluate statistical significance, using a wavelet-based framework that exploits spatial correlation at different scales. We propose an extension of this framework to extract activation patterns at specific wavelet scales. This method is especially interesting to detect the odour inputs that segregate on the olfactory bulb in small spherical structures called glomeruli. Interestingly, with proper selection of wavelet scales, we can isolate significantly activated glomeruli and thus determine the odour map in an automated manner. Comparison against manual detection of glomeruli shows the high accuracy of the proposed method. Therefore, beyond the advantageous alternative to the existing treatments of optical imaging signals in general, our framework propose an interesting procedure to dissect brain activation patterns on multiple scales with statistical control

    Encoding Odorant Identity by Spiking Packets of Rate-Invariant Neurons in Awake Mice

    Get PDF
    Background: How do neural networks encode sensory information? Following sensory stimulation, neural coding is commonly assumed to be based on neurons changing their firing rate. In contrast, both theoretical works and experiments in several sensory systems showed that neurons could encode information as coordinated cell assemblies by adjusting their spike timing and without changing their firing rate. Nevertheless, in the olfactory system, there is little experimental evidence supporting such model. Methodology/Principal Findings: To study these issues, we implanted tetrodes in the olfactory bulb of awake mice to record the odorant-evoked activity of mitral/tufted (M/T) cells. We showed that following odorant presentation, most M/T neurons do not significantly change their firing rate over a breathing cycle but rather respond to odorant stimulation by redistributing their firing activity within respiratory cycles. In addition, we showed that sensory information can be encoded by cell assemblies composed of such neurons, thus supporting the idea that coordinated populations of globally rateinvariant neurons could be efficiently used to convey information about the odorant identity. We showed that different coding schemes can convey high amount of odorant information for specific read-out time window. Finally we showed that the optimal readout time window corresponds to the duration of gamma oscillations cycles. Conclusion: We propose that odorant can be encoded by population of cells that exhibit fine temporal tuning of spiking activity while displaying weak or no firing rate change. These cell assemblies may transfer sensory information in spikin

    Reshaping of Bulbar Odor Response by Nasal Flow Rate in the Rat

    Get PDF
    The impact of respiratory dynamics on odor response has been poorly studied at the olfactory bulb level. However, it has been shown that sniffing in the behaving rodent is highly dynamic and varies both in frequency and flow rate. Bulbar odor response could vary with these sniffing parameter variations. Consequently, it is necessary to understand how nasal airflow can modify and shape odor response at the olfactory bulb level.To assess this question, we used a double cannulation and simulated nasal airflow protocol on anesthetized rats to uncouple nasal airflow from animal respiration. Both mitral/tufted cell extracellular unit activity and local field potentials (LFPs) were recorded. We found that airflow changes in the normal range were sufficient to substantially reorganize the response of the olfactory bulb. In particular, cellular odor-evoked activities, LFP oscillations and spike phase-locking to LFPs were strongly modified by nasal flow rate.Our results indicate the importance of reconsidering the notion of odor coding as odor response at the bulbar level is ceaselessly modified by respiratory dynamics

    Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    Get PDF
    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx). We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison

    Recovery and Purification of Plutonium by Trilaurylamine Extraction

    Full text link

    Differential spatial representation of taste modalities in the rat gustatory cortex

    No full text
    Discrimination between foods is crucial for the nutrition and survival of animals. Remarkable progress has been made through molecular and genetic manipulations in the understanding of the coding of taste at the receptor level. However, much less is known about the cortical processing of taste sensation and the organizing principles of the gustatory cortex (GC). Using genetic tracing, it has recently been shown that sweet and bitter taste are processed through segregated neuronal circuitries along the gustatory pathway up to the cortical level. This is in disagreement with the evidence that GC neurons recorded in both anesthetized and behaving animals responded to multiple taste modalities (including sweet and bitter). To investigate the functional architecture of the GC in regard to taste modalities, we used in vivo intrinsic optical imaging, a technique that has been successfully applied to explore the organization of other neocortical regions. We found that four of the primary taste modalities (sweet, bitter, salty, and sour) are represented by distinctive spatial patterns but that no region was specific to a single modality. In addition, we found that two tastants of similar hedonic value (pleasant or unpleasant) activated areas with more common regions than two tastants with opposite hedonic value. In summary, we propose that these specific cortical patterns can be used to discriminate among various tastants
    corecore