5,933 research outputs found

    Capacitors can radiate - some consequences of the two-capacitor problem with radiation

    Full text link
    We fill a gap in the arguments of Boykin et al [American Journal of Physics, Vol 70 No. 4, pp 415-420 (2002)] by not invoking an electric current loop (i.e. magnetic dipole model) to account for the radiation energy loss, since an obvious corollary of their results is that the capacitors should radiate directly even if the connecting wires are shrunk to zero length. That this is so is shown here by a direct derivation of capacitor radiation using an oscillating electric dipole radiator model for the capacitors as well as the alternative less widely known magnetic 'charge' current loop representation for an electric dipole [see for example "Electromagnetic Waves" by S.A.Schlekunoff, van Nostrand (1948)]. Implications for Electromagnetic Compliance (EMC) issues as well as novel antenna designs further motivate the purpose of this paper.Comment: 5 Pages with No figure

    HIV infection and domestic smoke exposure, but not human papillomavirus, are risk factors for esophageal squamous cell carcinoma in Zambia: a case-control study

    Get PDF
    (c) 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Novel relations and new properties of confluent Heun's functions and their derivatives of arbitrary order

    Full text link
    The present article reveals important properties of the confluent Heun's functions. We derive a set of novel relations for confluent Heun's functions and their derivatives of arbitrary order. Specific new subclasses of confluent Heun's functions are introduced and studied. A new alternative derivation of confluent Heun's polynomials is presented.Comment: 8 pages, no figures, LaTeX file, final versio

    Relativistic phase space: dimensional recurrences

    Get PDF
    We derive recurrence relations between phase space expressions in different dimensions by confining some of the coordinates to tori or spheres of radius RR and taking the limit as RR \to \infty. These relations take the form of mass integrals, associated with extraneous momenta (relative to the lower dimension), and produce the result in the higher dimension.Comment: 13 pages, Latex, to appear in J Phys

    Geodesics around Weyl-Bach's Ring Solution

    Full text link
    We explore some of the gravitational features of a uniform ring both in the Newtonian potential theory and in General Relativity. We use a spacetime associated to a Weyl static solution of the vacuum Einstein's equations with ring like singularity. The Newtonian motion for a test particle in the gravitational field of the ring is studied and compared with the corresponding geodesic motion in the given spacetime. We have found a relativistic peculiar attraction: free falling particle geodesics are lead to the inner rim but never hit the ring.Comment: 8 figures, 14 pages. LaTeX w/ subfigure, graphic

    Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests

    Get PDF
    We applied an eco-hydrologic model (Regional Hydro-Ecologic Simulation System [RHESSys]), constrained with spatially distributed field measurements, to assess the impacts of forest-fuel treatments and wildfire on hydrologic fluxes in two Sierra Nevada firesheds. Strategically placed fuels treatments were implemented during 2011–2012 in the upper American River in the central Sierra Nevada (43 km2) and in the upper Fresno River in the southern Sierra Nevada (24 km2). This study used the measured vegetation changes from mechanical treatments and modelled vegetation change from wildfire to determine impacts on the water balance. The well-constrained headwater model was transferred to larger catchments based on geologic and hydrologic similarities. Fuels treatments covered 18% of the American and 29% of the Lewis catchment. Averaged over the entire catchment, treatments in the wetter central Sierra Nevada resulted in a relatively light vegetation decrease (8%), leading to a 12% runoff increase, averaged over wet and dry years. Wildfire with and without forest treatments reduced vegetation by 38% and 50% and increased runoff by 55% and 67%, respectively. Treatments in the drier southern Sierra Nevada also reduced the spatially averaged vegetation by 8%, but the runoff response was limited to an increase of less than 3% compared with no treatment. Wildfire following treatments reduced vegetation by 40%, increasing runoff by 13%. Changes to catchment-scale water-balance simulations were more sensitive to canopy cover than to leaf area index, indicating that the pattern as well as amount of vegetation treatment is important to hydrologic response

    Minimal coupling method and the dissipative scalar field theory

    Full text link
    Quantum field theory of a damped vibrating string as the simplest dissipative scalar field investigated by its coupling with an infinit number of Klein-Gordon fields as the environment by introducing a minimal coupling method. Heisenberg equation containing a dissipative term proportional to velocity obtained for a special choice of coupling function and quantum dynamics for such a dissipative system investigated. Some kinematical relations calculated by tracing out the environment degrees of freedom. The rate of energy flowing between the system and it's environment obtained.Comment: 15 pages, no figur

    Diets, Food Preferences, and Reproductive Cycles of Some Desert Rodents

    Get PDF

    Hot Electron Capture Dissociation Distinguishes Leucine from Isoleucine in a Novel Hemoglobin Variant, Hb Askew, β54(D5)Val→Ile

    Get PDF
    Population migration has led to the global dispersion of human hemoglobinopathies and has precipitated a need for their identification. An effective mass spectrometry-based procedure involves analysis of the intact α- and β-globin chains to determine their mass, followed by location of the variant amino acid residue by direct analysis of the enzymatically digested chains and low-energy collision induced dissociation of the variant peptide. Using this procedure, a variant was identified as either β54Val→Leu or β54Val→Ile, since the amino acids leucine and isoleucine cannot be distinguished using low-energy collisions. Here, we describe how hot electron capture dissociation on a Fourier transform-ion cyclotron resonance mass spectrometer was used to distinguish isoleucine from leucine and identify the mutation as β54(D5)Val→Ile. This is a novel variant, and we have named it Hb Askew
    corecore