2,851 research outputs found

    Motion of buoyant particles and coarsening of solid-liquid mixtures in a random acceleration field

    Get PDF
    Flow induced by a random acceleration field (g-jitter) is considered in two related situations that are of interest for microgravity fluid experiments: the random motion of an isolated buoyant particle and coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. We then study the motion of a solid particle suspended in an incompressible fluid that is subjected to such random accelerations. The displacement of the particle is shown to have a diffusive component if the correlation time of the stochastic acceleration is finite or zero, and mean squared velocities and effective diffusion coefficients are obtained explicitly. Finally, the effect of g-jitter on coarsening of a solid-liquid mixture is considered. Corrections due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, experiment to be conducted in microgravity in the near future.Comment: 25 pages, 4 figures (included). Also at http://www.scri.fsu.edu/~vinals/ross2.p

    Temperley-Lieb Words as Valence-Bond Ground States

    Full text link
    Based on the Temperley--Lieb algebra we define a class of one-dimensional Hamiltonians with nearest and next-nearest neighbour interactions. Using the regular representation we give ground states of this model as words of the algebra. Two point correlation functions can be computed employing the Temperley--Lieb relations. Choosing a spin-1/2 representation of the algebra we obtain a generalization of the (q-deformed) Majumdar--Ghosh model. The ground states become valence-bond states.Comment: 9 Pages, LaTeX (with included style files

    A meta-analysis of variables that predict significant intracranial injury in minor head trauma.

    No full text
    BACKGROUND: Previous studies have presented conflicting results regarding the predictive effect of various clinical symptoms, signs, and plain imaging for intracranial pathology in children with minor head injury. AIMS: To perform a meta-analysis of the literature in order to assess the significance of these factors and intracranial haemorrhage (ICH) in the paediatric population. METHODS: The literature was searched using Medline, Embase, Experts, and the grey literature. Reference lists of major guidelines were crosschecked. Control or nested case-control studies of children with head injury who had skull radiography, recording of common symptoms and signs, and head computed tomography (CT) were selected. OUTCOME VARIABLE: CT presence or absence of ICH. RESULTS: Sixteen papers were identified as satisfying criteria for inclusion in the meta-analysis, although not every paper contained data on every correlate. Available evidence gave pooled patient numbers from 1136 to 22 420. Skull fracture gave a relative risk ratio of 6.13 (95% CI 3.35 to 11.2), headache 1.02 (95% CI 0.62 to 1.69), vomiting 0.88 (95% CI 0.67 to 1.15), focal neurology 9.43 (2.89 to 30.8), seizures 2.82 (95% CI 0.89 to 9.00), LOC 2.23 (95% CI 1.20 to 4.16), and Glasgow Coma Scale (GCS) <15 of 5.51 (95% CI 1.59 to 19.0). CONCLUSIONS: There was a statistically significant correlation between intracranial haemorrhage and skull fracture, focal neurology, loss of consciousness, and GCS abnormality. Headache and vomiting were not found to be predictive and there was great variability in the predictive ability of seizures. More information is required about the current predictor variables so that more refined guidelines can be developed. Further research is currently underway by three large study groups

    Desmin forms toxic, seeding-competent amyloid aggregates that persist in muscle fibers

    Get PDF
    Desmin-associated myofibrillar myopathy (MFM) has pathologic similarities to neurodegeneration-associated protein aggregate diseases. Desmin is an abundant muscle-specific intermediate filament, and disease mutations lead to its aggregation in cells, animals, and patients. We reasoned that similar to neurodegeneration-associated proteins, desmin itself may form amyloid. Desmin peptides corresponding to putative amyloidogenic regions formed seeding-competent amyloid fibrils. Amyloid formation was increased when disease-associated mutations were made within the peptide, and this conversion was inhibited by the anti-amyloid compound epigallocatechin-gallate. Moreover, a purified desmin fragment (aa 117 to 348) containing both amyloidogenic regions formed amyloid fibrils under physiologic conditions. Desmin fragment-derived amyloid coaggregated with full-length desmin and was able to template its conversion into fibrils in vitro. Desmin amyloids were cytotoxic to myotubes and disrupted their myofibril organization compared with desmin monomer or other nondesmin amyloids. Finally, desmin fragment amyloid persisted when introduced into mouse skeletal muscle. These data suggest that desmin forms seeding-competent amyloid that is toxic to myofibers. Moreover, small molecules known to interfere with amyloid formation and propagation may have therapeutic potential in MFM

    Turbulent Pair Diffusion

    Full text link
    Kinematic Simulations of turbulent pair diffusion in planar turbulence with a -5/3 energy spectrum reproduce the results of the laboratory measurements of Jullien Phys. Rev. Lett. 82, 2872 (1999), in particular the stretched exponential form of the PDF of pair separations and their correlation functions. The root mean square separation is found to be strongly dependent on initial conditions for very long stretches of times. This dependence is consistent with the topological picture of turbulent pair diffusion where pairs initially close enough travel together for long stretches of time and separate violently when they meet straining regions around hyperbolic points. A new argument based on the divergence of accelerations is given to support this picture

    Microscale swimming: The molecular dynamics approach

    Full text link
    The self-propelled motion of microscopic bodies immersed in a fluid medium is studied using molecular dynamics simulation. The advantage of the atomistic approach is that the detailed level of description allows complete freedom in specifying the swimmer design and its coupling with the surrounding fluid. A series of two-dimensional swimming bodies employing a variety of propulsion mechanisms -- motivated by biological and microrobotic designs -- is investigated, including the use of moving limbs, changing body shapes and fluid jets. The swimming efficiency and the nature of the induced, time-dependent flow fields are found to differ widely among body designs and propulsion mechanisms.Comment: 5 pages, 3 figures (minor changes to text

    Internal relaxation time in immersed particulate materials

    Full text link
    We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams

    Enstrophy dissipation in two-dimensional turbulence

    Full text link
    Insight into the problem of two-dimensional turbulence can be obtained by an analogy with a heat conduction network. It allows the identification of an entropy function associated to the enstrophy dissipation and that fluctuates around a positive (mean) value. While the corresponding enstrophy network is highly nonlocal, the direction of the enstrophy current follows from the Second Law of Thermodynamics. An essential parameter is the ratio Tk=γk/(νk2)T_k = \gamma_k /(\nu k^2) of the intensity of driving γk>0\gamma_k>0 as a function of wavenumber kk, to the dissipation strength νk2\nu k^2, where ν\nu is the viscosity. The enstrophy current flows from higher to lower values of TkT_k, similar to a heat current from higher to lower temperature. Our probabilistic analysis of the enstrophy dissipation and the analogy with heat conduction thus complements and visualizes the more traditional spectral arguments for the direct enstrophy cascade. We also show a fluctuation symmetry in the distribution of the total entropy production which relates the probabilities of direct and inverse enstrophy cascades.Comment: 8 pages, revtex

    Phase diagram of the su(8) quantum spin tube

    Full text link
    We calculate the phase diagram of an integrable anisotropic 3-leg quantum spin tube connected to the su(8) algebra. We find several quantum phase transitions for antiferromagnetic rung couplings. Their locations are calculated exactly from the Bethe Ansatz solution and we discuss the nature of each of the different phases.Comment: 10 pages, RevTeX, 1 postscript figur
    • …
    corecore