21 research outputs found
Physical Processes in Star Formation
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
Learning Similarity with Fuzzy Functions of Adaptable Complexity
A common approach in database queries involves the multidimensional representation of objects by a set of features. These features are compared to the query representation and then combined together to produce a total similarity metric. In this paper we introduce a novel technique for similarity learning within features (attributes) by manipulating fuzzy membership functions (FMFs) of different complexity. Our approach is based on a gradual complexity increase adaptable to problem requirements. The underlying idea is that less adaptable functions will act as approximations for more complex ones