97 research outputs found

    ROCK Inhibitor Is Not Required for Embryoid Body Formation from Singularized Human Embryonic Stem Cells

    Get PDF
    We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications

    The pituitary tumor transforming gene 1 (PTTG-1): An immunological target for multiple myeloma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple Myeloma is a cancer of B plasma cells, which produce non-specific antibodies and proliferate uncontrolled. Due to the potential relapse and non-specificity of current treatments, immunotherapy promises to be more specific and may induce long-term immunity in patients. The pituitary tumor transforming gene 1 (PTTG-1) has been shown to be a novel oncogene, expressed in the testis, thymus, colon, lung and placenta (undetectable in most other tissues). Furthermore, it is over expressed in many tumors such as the pituitary adenoma, breast, gastrointestinal cancers, leukemia, lymphoma, and lung cancer and it seems to be associated with tumorigenesis, angiogenesis and cancer progression. The purpose was to investigate the presence/rate of expression of PTTG-1 in multiple myeloma patients.</p> <p>Methods</p> <p>We analyzed the PTTG-1 expression at the transcriptional and the protein level, by PCR, immunocytochemical methods, Dot-blot and ELISA performed on patient's sera in 19 multiple myeloma patients, 6 different multiple myeloma cell lines and in normal human tissue.</p> <p>Results</p> <p>We did not find PTTG-1 presence in the normal human tissue panel, but PTTG-1 mRNA was detectable in 12 of the 19 patients, giving evidence of a 63% rate of expression (data confirmed by ELISA). Four of the 6 investigated cell lines (66.6%) were positive for PTTG-1. Investigations of protein expression gave evidence of 26.3% cytoplasmic expression and 16% surface expression in the plasma cells of multiple myeloma patients. Protein presence was also confirmed by Dot-blot in both cell lines and patients.</p> <p>Conclusion</p> <p>We established PTTG-1's presence at both the transcriptional and protein levels. These data suggest that PTTG-1 is aberrantly expressed in multiple myeloma plasma cells, is highly immunogenic and is a suitable target for immunotherapy of multiple myeloma.</p

    Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization.

    Get PDF
    The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made

    The Role of the BMP Signaling Antagonist Noggin in the Development of Prostate Cancer Osteolytic Bone Metastasis

    Get PDF
    Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases

    Narrowing the knowledge gaps for melanoma

    Get PDF
    Cutaneous melanoma originates from pigment producing melanocytes or their precursors and is considered the deadliest form of skin cancer. For the last 40 years, few treatment options were available for patients with late-stage melanoma. However, remarkable advances in the therapy field were made recently, leading to the approval of two new drugs, the mutant BRAF inhibitor vemurafenib and the immunostimulant ipilimumab. Although these drugs prolong patients' lives, neither drug cures the disease completely, emphasizing the need for improvements of current therapies. Our knowledge about the complex genetic and biological mechanisms leading to melanoma development has increased, but there are still gaps in our understanding of the early events of melanocyte transformation and disease progression. In this review, we present a summary of the main contributing factors leading to melanocyte transformation and discuss recent novel findings and technologies that will help answer some of the key biological melanoma questions and lay the groundwork for novel therapies

    Where Are All the Mycobacterium avium Subspecies paratuberculosis in Patients with Crohn's Disease?

    Get PDF
    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic granulomatous inflammation of the intestines, Johne's disease, in dairy cows and every other species of mammal in which it has been identified. MAP has been identified in the mucosal layer and deeper bowel wall in patients with Crohn's disease by methods other than light microscopy, and by direct visualization in small numbers by light microscopy. MAP has not been accepted as the cause of Crohn's disease in part because it has not been seen under the microscope in large numbers in the intestines of patients with Crohn's disease. An analysis of the literature on the pathology of Crohn's disease and on possible MAP infection in Crohn's patients suggests that MAP might directly infect endothelial cells and adipocytes and cause them to proliferate, causing focal obstruction within already existing vessels (including granuloma formation), the development of new vessels (neoangiogenesis and lymphangiogenesis), and the “creeping fat” of the mesentery that is unique in human pathology to Crohn's disease but also occurs in bovine Johne's disease. Large numbers of MAP might therefore be found in the mesentery attached to segments of intestine affected by Crohn's disease rather than in the bowel wall, the blood and lymphatic vessels running through the mesentery, or the mesenteric fat itself. The walls of fistulas might result from the neoangiogenesis or lymphangiogenesis that occurs in the bowel wall in Crohn's disease and therefore are also possible sites of large numbers of MAP. The direct visualization of large numbers of MAP organisms in the tissues of patients with Crohn's disease will help establish that MAP causes Crohn's disease

    Epidemic reconstruction in a Phylogenetics framework:Transmission trees as partitions of the node set

    Get PDF
    The reconstruction of transmission trees for epidemics from genetic data has been the subject of some recent interest. It has been demonstrated that the transmission tree structure can be investigated by augmenting internal nodes of a phylogenetic tree constructed using pathogen sequences from the epidemic with information about the host that held the corresponding lineage. In this paper, we note that this augmentation is equivalent to a correspondence between transmission trees and partitions of the phylogenetic tree into connected subtrees each containing one tip, and provide a framework for Markov Chain Monte Carlo inference of phylogenies that are partitioned in this way, giving a new method to co-estimate both trees. The procedure is integrated in the existing phylogenetic inference package BEAST.Comment: 40 pages, 3 figure
    corecore