29 research outputs found

    Mosaic maternal ancestry in the Great Lakes region of East Africa

    Get PDF
    The Great Lakes lie within a region of East Africa with very high human genetic diversity, home of many ethno-linguistic groups usually assumed to be the product of a small number of major dispersals. However, our knowledge of these dispersals relies primarily on the inferences of historical, linguistics and oral traditions, with attempts to match up the archaeological evidence where possible. This is an obvious area to which archaeogenetics can contribute, yet Uganda, at the heart of these developments, has not been studied for mitochondrial DNA (mtDNA) variation. Here, we compare mtDNA lineages at this putative genetic crossroads across 409 representatives of the major language groups: Bantu speakers and Eastern and Western Nilotic speakers. We show that Uganda harbours one of the highest mtDNA diversities within and between linguistic groups, with the various groups significantly differentiated from each other. Despite an inferred linguistic origin in South Sudan, the data from the two Nilotic-speaking groups point to a much more complex history, involving not only possible dispersals from Sudan and the Horn but also large-scale assimilation of autochthonous lineages within East Africa and even Uganda itself. The Eastern Nilotic group also carries signals characteristic of West-Central Africa, primarily due to Bantu influence, whereas a much stronger signal in the Western Nilotic group suggests direct West-Central African ancestry. Bantu speakers share lineages with both Nilotic groups, and also harbour East African lineages not found in Western Nilotic speakers, likely due to assimilating indigenous populations since arriving in the region ~3000 years ago

    Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis

    Get PDF
    Background Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. Methods We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. Findings A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13×10– ¹⁵) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], p=7·65×10– ²⁰) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], p=1·69×10– ¹²; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity. Interpretation This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. Funding UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR

    Lakeside View: Sociocultural Responses to Changing Water Levels of Lake Turkana, Kenya

    Get PDF

    Race and BMI modify associations of calcium and vitamin D intake with prostate cancer

    Get PDF
    Background: African Americans have disproportionately higher burden of prostate cancer compared to European Americans. However, the cause of prostate cancer disparities is still unclear. Several roles have been proposed for calcium and vitamin D in prostate cancer pathogenesis and progression, but epidemiologic studies have been conducted mainly in European descent populations. Here we investigated the association of calcium and vitamin D intake with prostate cancer in multiethnic samples. Methods: A total of 1,657 prostate cancer patients who underwent screening and healthy controls (888 African Americans, 620 European Americans, 111 Hispanic Americans, and 38 others) from Chicago, IL and Washington, D.C. were included in this study. Calcium and vitamin D intake were evaluated using food frequency questionnaire. We performed unconditional logistic regression analyses adjusting for relevant variables. Results: In the pooled data set, high calcium intake was significantly associated with higher odds for aggressive prostate cancer (ORQuartile (1 vs. Quartile) (4) = 1.98, 95% C.I.: 1.01-3.91), while high vitamin D intake was associated with lower odds of aggressive prostate cancer (ORQuartile 1 vs. Quartile (4) = 0.38, 95% C.I.: 0.18-0.79). In African Americans, the association between high calcium intake and aggressive prostate cancer was statistically significant (ORQuartile 1 vs. Quartile 4 = 4.28, 95% C.I.: 1.70-10.80). We also observed a strong inverse association between total vitamin D intake and prostate cancer in African Americans (ORQuartile 1 vs. Quartile 4 = 0.06, 95% C.I.: 0.02-0.54). In European Americas, we did not observe any significant associations between either calcium or vitamin D intake and prostate cancer. In analyses stratifying participants based on Body Mass Index (BMI), we observed a strong positive association between calcium and aggressive prostate cancer and a strong inverse association between vitamin D intake and aggressive prostate cancer among men with low BMI (= 27.8 kg/m(2)). Interactions of race and BMI with vitamin D intake were significant (P-Interaction < 0.05). Conclusion: Calcium intake was positively associated with aggressive prostate cancer, while vitamin D intake exhibited an inverse relationship. However, these associations varied by race/ethnicity and BMI. The findings from this study may help develop better prostate cancer prevention and management strategies.National Institutes of Health [1R01MD007105-01]; US Department of Defense [W81XWH-10-1-0532]; Veterans Health Administration [1IK2CX000926-01]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Genetic loci associated with skin pigmentation in African Americans and their effects on vitamin D deficiency.

    No full text
    A recent genome-wide association study (GWAS) in African descent populations identified novel loci associated with skin pigmentation. However, how genomic variations affect skin pigmentation and how these skin pigmentation gene variants affect serum 25(OH) vitamin D variation has not been explored in African Americans (AAs). In order to further understand genetic factors that affect human skin pigmentation and serum 25(OH)D variation, we performed a GWAS for skin pigmentation with 395 AAs and a replication study with 681 AAs. Then, we tested if the identified variants are associated with serum 25(OH) D concentrations in a subset of AAs (n = 591). Skin pigmentation, Melanin Index (M-Index), was measured using a narrow-band reflectometer. Multiple regression analysis was performed to identify variants associated with M-Index and to assess their role in serum 25(OH)D variation adjusting for population stratification and relevant confounding variables. A variant near the SLC24A5 gene (rs2675345) showed the strongest signal of association with M-Index (P = 4.0 x 10-30 in the pooled dataset). Variants in SLC24A5, SLC45A2 and OCA2 together account for a large proportion of skin pigmentation variance (11%). The effects of these variants on M-Index was modified by sex (P for interaction = 0.009). However, West African Ancestry (WAA) also accounts for a large proportion of M-Index variance (23%). M-Index also varies among AAs with high WAA and high Genetic Score calculated from top variants associated with M-Index, suggesting that other unknown genomic factors related to WAA are likely contributing to skin pigmentation variation. M-Index was not associated with serum 25(OH)D concentrations, but the Genetic Score was significantly associated with vitamin D deficiency (serum 25(OH)D levels less than 12 ng/mL) (OR, 1.30; 95% CI, 1.04-1.64). The findings support the hypothesis suggesting that skin pigmentation evolved responding to increased demand for subcutaneous vitamin D synthesis in high latitude environments
    corecore