124 research outputs found

    « Il seno nudo », ou Palomar et les derniers avatars de la scène de séduction

    Get PDF
    Chez un écrivain comme Italo Calvino qui, en quarante ans de production littéraire, n’a jamais choisi une femme pour protagoniste d’un de ses romans, et qui, en 1960, en repensant à l’époque de la rédaction du Sentiero dei nidi di ragno, déclarait déjà : « je n’étais pas intéressé – et peut-être n’ai-je guère changé depuis lors – par la psychologie, l’intériorité […] », on n’est guère surpris que le thème de la séduction, propice à l’introspection et à l’évocation des mouvements de l’âme, soi..

    Joint inversion of teleseismic and GOCE gravity data: application to the Himalayas

    Get PDF
    Our knowledge and understanding of the 3-D lithospheric structure of the Himalayas and the Tibetan Plateau is still challenging although numerous geophysical studies have been performed in the region. The GOCE satellite mission has the ambitious goal of mapping Earth's gravity field with unprecedented precision (i.e. an accuracy of 1-2 mGal for a spatial resolution of 100 km) to observe the lithosphere and upper-mantle structure. Consequently, it gives new insights in the lithospheric structure beneath the Himalayas and the Tibetan Plateau. Indeed, the GOCE gravity data now allow us to develop a new strategy for joint gravimetry-seismology inversion. Combined with teleseismic data over a large region in a joint inversion scheme, they will lead to lithospheric velocity-density models constrained in two complementary ways. We apply this joint inversion scheme to the Hi-CLIMB (Himalayan-Tibetan Continental Lithosphere during Mountain Building) seismological network which was deployed in South Tibet and the Himalayas for a 3-yr period. The large size of the network, the high quality of the seismological data and the new GOCE gravity data set allow us to image the entire lithosphere of this active area in an innovative way. We image 3-D low velocity and density structures in the middle crust that fit the location of discontinuous low S-velocity zones revealed by receiver functions in previous geophysical studies. In the deeper parts of our velocity model we image a positive anomaly interpreted to be the heterogenous Indian lithosphere vertically descending beneath the centre of the Tibetan Platea

    Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    Get PDF
    International audienceWe analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ∼35km; (2) this thins to ∼22km in coastal areas and reaches less than 14km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ∼1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ∼130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin

    抗腫瘍性トロポロン誘導体の創製と作用機序に関する研究

    Get PDF
    We image the lithospheric and upper asthenospheric structure of western continental Yemen with 24 broadband stations to evaluate the role of the Afar plume on the evolution of the continental margin and its extent eastward along the Gulf of Aden. We use teleseismic tomography to compute relative P wave velocity variations in south-western Yemen down to 300 km depth. Published receiver function analysis suggest a dramatic and localized thinning of the crust in the vicinity of the Red Sea and the Gulf of Aden, consistent with the velocity structure that we retrieve in our model. The mantle part of the model is dominated by the presence of a low-velocity anomaly in which we infer partial melting just below thick Oligocene flood basalts and recent off-axis volcanic events (from 15 Ma to present). This low-velocity anomaly could correspond to an abnormally hot mantle and could be responsible for dynamic topography and recent magmatism in western Yemen. Our new P wave velocity model beneath western Yemen suggests the young rift flank volcanoes beneath margins and on the flanks of the Red Sea rift are caused by focused small-scale diapiric upwelling from a broad region of hot mantle beneath the area. Our work shows that relatively hot mantle, along with partial melting of the mantle, can persist beneath rifted margins after breakup has occurred
    corecore