907 research outputs found

    Holographic Studies of Entanglement Entropy in Superconductors

    Full text link
    We present the results of our studies of the entanglement entropy of a superconducting system described holographically as a fully back-reacted gravity system, with a stable ground state. We use the holographic prescription for the entanglement entropy. We uncover the behavior of the entropy across the superconducting phase transition, showing the reorganization of the degrees of freedom of the system. We exhibit the behaviour of the entanglement entropy from the superconducting transition all the way down to the ground state at T=0. In some cases, we also observe a novel transition in the entanglement entropy at intermediate temperatures, resulting from the detection of an additional length scale.Comment: 21 pages, 14 figures. v2:Clarified some remarks concerning stability. v3: Updated to the version that appears in JHE

    Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions

    Full text link
    Euclidean gravity method has been successful in computing logarithmic corrections to extremal black hole entropy in terms of low energy data, and gives results in perfect agreement with the microscopic results in string theory. Motivated by this success we apply Euclidean gravity to compute logarithmic corrections to the entropy of various non-extremal black holes in different dimensions, taking special care of integration over the zero modes and keeping track of the ensemble in which the computation is done. These results provide strong constraint on any ultraviolet completion of the theory if the latter is able to give an independent computation of the entropy of non-extremal black holes from microscopic description. For Schwarzschild black holes in four space-time dimensions the macroscopic result seems to disagree with the existing result in loop quantum gravity.Comment: LaTeX, 40 pages; corrected small typos and added reference

    Animal model integration to AutDB, a genetic database for autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the post-genomic era, multi-faceted research on complex disorders such as autism has generated diverse types of molecular information related to its pathogenesis. The rapid accumulation of putative candidate genes/loci for Autism Spectrum Disorders (ASD) and ASD-related animal models poses a major challenge for systematic analysis of their content. We previously created the Autism Database (AutDB) to provide a publicly available web portal for ongoing collection, manual annotation, and visualization of genes linked to ASD. Here, we describe the design, development, and integration of a new module within AutDB for ongoing collection and comprehensive cataloguing of ASD-related animal models.</p> <p>Description</p> <p>As with the original AutDB, all data is extracted from published, peer-reviewed scientific literature. Animal models are annotated with a new standardized vocabulary of phenotypic terms developed by our researchers which is designed to reflect the diverse clinical manifestations of ASD. The new Animal Model module is seamlessly integrated to AutDB for dissemination of diverse information related to ASD. Animal model entries within the new module are linked to corresponding candidate genes in the original "Human Gene" module of the resource, thereby allowing for cross-modal navigation between gene models and human gene studies. Although the current release of the Animal Model module is restricted to mouse models, it was designed with an expandable framework which can easily incorporate additional species and non-genetic etiological models of autism in the future.</p> <p>Conclusions</p> <p>Importantly, this modular ASD database provides a platform from which data mining, bioinformatics, and/or computational biology strategies may be adopted to develop predictive disease models that may offer further insights into the molecular underpinnings of this disorder. It also serves as a general model for disease-driven databases curating phenotypic characteristics of corresponding animal models.</p

    Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor

    Get PDF
    The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale

    Holographic Entanglement Entropy in P-wave Superconductor Phase Transition

    Full text link
    We investigate the behavior of entanglement entropy across the holographic p-wave superconductor phase transition in an Einstein-Yang-Mills theory with a negative cosmological constant. The holographic entanglement entropy is calculated for a strip geometry at AdS boundary. It is found that the entanglement entropy undergoes a dramatic change as we tune the ratio of the gravitational constant to the Yang-Mills coupling, and that the entanglement entropy does behave as the thermal entropy of the background black holes. That is, the entanglement entropy will show the feature of the second order or first order phase transition when the ratio is changed. It indicates that the entanglement entropy is a good probe to investigate the properties of the holographic phase transition.Comment: 19 pages,15 figures, extended discussion in Sec.5, references adde
    corecore