910 research outputs found
Holographic Studies of Entanglement Entropy in Superconductors
We present the results of our studies of the entanglement entropy of a
superconducting system described holographically as a fully back-reacted
gravity system, with a stable ground state. We use the holographic prescription
for the entanglement entropy. We uncover the behavior of the entropy across the
superconducting phase transition, showing the reorganization of the degrees of
freedom of the system. We exhibit the behaviour of the entanglement entropy
from the superconducting transition all the way down to the ground state at
T=0. In some cases, we also observe a novel transition in the entanglement
entropy at intermediate temperatures, resulting from the detection of an
additional length scale.Comment: 21 pages, 14 figures. v2:Clarified some remarks concerning stability.
v3: Updated to the version that appears in JHE
Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions
Euclidean gravity method has been successful in computing logarithmic
corrections to extremal black hole entropy in terms of low energy data, and
gives results in perfect agreement with the microscopic results in string
theory. Motivated by this success we apply Euclidean gravity to compute
logarithmic corrections to the entropy of various non-extremal black holes in
different dimensions, taking special care of integration over the zero modes
and keeping track of the ensemble in which the computation is done. These
results provide strong constraint on any ultraviolet completion of the theory
if the latter is able to give an independent computation of the entropy of
non-extremal black holes from microscopic description. For Schwarzschild black
holes in four space-time dimensions the macroscopic result seems to disagree
with the existing result in loop quantum gravity.Comment: LaTeX, 40 pages; corrected small typos and added reference
Animal model integration to AutDB, a genetic database for autism
<p>Abstract</p> <p>Background</p> <p>In the post-genomic era, multi-faceted research on complex disorders such as autism has generated diverse types of molecular information related to its pathogenesis. The rapid accumulation of putative candidate genes/loci for Autism Spectrum Disorders (ASD) and ASD-related animal models poses a major challenge for systematic analysis of their content. We previously created the Autism Database (AutDB) to provide a publicly available web portal for ongoing collection, manual annotation, and visualization of genes linked to ASD. Here, we describe the design, development, and integration of a new module within AutDB for ongoing collection and comprehensive cataloguing of ASD-related animal models.</p> <p>Description</p> <p>As with the original AutDB, all data is extracted from published, peer-reviewed scientific literature. Animal models are annotated with a new standardized vocabulary of phenotypic terms developed by our researchers which is designed to reflect the diverse clinical manifestations of ASD. The new Animal Model module is seamlessly integrated to AutDB for dissemination of diverse information related to ASD. Animal model entries within the new module are linked to corresponding candidate genes in the original "Human Gene" module of the resource, thereby allowing for cross-modal navigation between gene models and human gene studies. Although the current release of the Animal Model module is restricted to mouse models, it was designed with an expandable framework which can easily incorporate additional species and non-genetic etiological models of autism in the future.</p> <p>Conclusions</p> <p>Importantly, this modular ASD database provides a platform from which data mining, bioinformatics, and/or computational biology strategies may be adopted to develop predictive disease models that may offer further insights into the molecular underpinnings of this disorder. It also serves as a general model for disease-driven databases curating phenotypic characteristics of corresponding animal models.</p
Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor
The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale
Holographic Entanglement Entropy in P-wave Superconductor Phase Transition
We investigate the behavior of entanglement entropy across the holographic
p-wave superconductor phase transition in an Einstein-Yang-Mills theory with a
negative cosmological constant. The holographic entanglement entropy is
calculated for a strip geometry at AdS boundary. It is found that the
entanglement entropy undergoes a dramatic change as we tune the ratio of the
gravitational constant to the Yang-Mills coupling, and that the entanglement
entropy does behave as the thermal entropy of the background black holes. That
is, the entanglement entropy will show the feature of the second order or first
order phase transition when the ratio is changed. It indicates that the
entanglement entropy is a good probe to investigate the properties of the
holographic phase transition.Comment: 19 pages,15 figures, extended discussion in Sec.5, references adde
Recommended from our members
Inclusive J/ψ production at mid-rapidity in pp collisions at √s = 5.02 TeV
Inclusive J/ψ production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (|y| < 0.9) in the dielectron decay channel down to zero transverse momentum pT, using a data sample corresponding to an integrated luminosity of Lint = 19.4 ± 0.4 nb−1. The measured pT-integrated inclusive J/ψ production cross sec- tion is dσ/dy = 5.64 ± 0.22(stat.) ± 0.33(syst.) ± 0.12(lumi.) μb. The pT-differential cross section d2σ/dpTdy is measured in the pT range 0–10 GeV/c and compared with state-of- the-art QCD calculations. The J/ψ 〈pT〉 and 〈pT2〉 are extracted and compared with results obtained at other collision energies. [Figure not available: see fulltext.]
Recommended from our members
Measurement of Λ (1520) production in pp collisions at √s=7TeV and p–Pb collisions at √sNN=5.02TeV
The production of the Λ (1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s=7TeV and in p–Pb collisions at sNN=5.02TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Λ (1520) → pK - and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p–Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (π, K, KS0, p, Λ) describes the shape of the Λ (1520) transverse momentum distribution up to 3.5GeV/c in p–Pb collisions. In the framework of this model, this observation suggests that the Λ (1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Λ (1520) to the yield of the ground state particle Λ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p–Pb collisions on the Λ (1520) yield
Recommended from our members
Measurement of ϒ(1S) Elliptic Flow at Forward Rapidity in Pb-Pb Collisions at sqrt[s_{NN}]=5.02 TeV.
The first measurement of the ϒ(1S) elliptic flow coefficient (v_{2}) is performed at forward rapidity (2.
- …