118 research outputs found

    Health needs, access to healthcare, and perceptions of ageing in an urbanizing community in India: a qualitative study.

    Get PDF
    BACKGROUND: India's elderly population is rising at an unprecedented rate, with a majority living in rural areas. Health challenges associated with ageing, changing social networks and limited public health infrastructure are issues faced by the elderly and caregivers. We examined perceptions of health needs of the elderly across local stakeholders in an urbanizing rural area. METHODS: The qualitative study was conducted among participants in the Andhra Pradesh Children and Parents Study (APCAPS) site in Rangareddy district, Telangana. We collected data using focus group discussions and interviews among communities (n = 6), health providers (n = 9) and administrators (n = 6). We assessed stakeholders' views on the influence of urbanization on health issues faced and interventions for alleviating these challenges. We used a conceptual-analytical model to derive themes and used an inductive approach to organizing emerging codes as per a priori themes. These were organized as per thematic groups and ranked by different authors in order of importance. Bronfebrenner's theory was used to understand stakeholder perspectives and suggest interventions within four identified spheres of influence - individual, household, community and services. RESULTS: Stakeholders reported frailty, lack of transport and dependence on others as factors impacting health access of the elderly. Existing public health systems were perceived as overburdened and insensitive towards the elderly. Urbanization was viewed positively, but road accidents, crime and loneliness were significant concerns. Interventions suggested by stakeholders included health service outreach, lifestyle counseling, community monitoring of healthcare and engagement activities. CONCLUSIONS: We recommend integrating outreach services and lifestyle counseling within programs for care of the elderly. Community institutions can play an important role in the delivery and monitoring of health and social services for the elderly

    Role of FNAC in Early Detection and Diagnosis of Lung Lesions with Histo-radiological Correlation and Clinical Insights in a Tertiary Care Centre

    Get PDF
    Background: Carcinoma of lung has now become increasingly frequent during the last 60 years; this increase is seen in males and especially in the females. Cytological evaluation from respiratory tract is the initial investigation along with radiological investigations in patients suspected to have pulmonary diseases. The various cytological samples included transbronchial needle aspiration, guided fine needle aspiration cytology (FNAC) smears and pleural fluid. Present study was undertaken to study the spectrum of lesions diagnosed by cytomorphological analysis of various cytological samples and correlation of the histopathology, cytology and radiology of lung lesions. Materials and Methods: Centrifuged and direct smears from received samples were stained with MGG and PAP stain. Cytohistological correlation was done when biopsy was available with radiological correlation & comparison of topographic display. Results: Present study was carried out during the period of December 2018 to November 2019. During this period, of total 52 cases, 36 (69.2%) were males and 16 (30.8%) were females. Their age ranged from 26 years to 73 years, most patients (53.8) belonged to the age group of 56 – 65 years. The literacy status of the patients was assessed. 2 out of 52 (3.8%) patients were illiterate, 8 out of 52 (15.4%) patients were educated above H.S. level. Adenocarcinoma was seen to be the most prevalent 29 (55.7%) followed by squamous cell carcinoma 12 (23.0%) among the cases studied. Smoking was seen to be the most common addiction i.e. 34 out of 52 cases (65.4%). Among non-smokers 66.7% presented with adenocarcinoma and 16.6% cases with squamous cell carcinoma. The topography of the neoplasms within the lungs was assessed radiologically. On chest X ray (82.6%) lung lesions were identified; (48%) of patients were found to have pleural effusion. By using CT SCAN, all masses were located definitely. Conclusion: A good correlation between cytology and histopathology is revealed in our study. Guided FNAC helps in early detection and diagnosis of lung lesions and facilitates appropriate management of patients. Keywords: Lung, Carcinoma, Detection, Diagnosis, Fine needle aspiration, Cytology, Histopathology, Radiology, Correlatio

    Modelling Legacy Nitrogen Dynamics in the Transboundary Lake Erie Watershed

    Get PDF
    Lake Erie is a source of drinking water, recreation, and commercial opportunity for both the United States and Canada, making the protection of its water quality essential. In the past decades, Lake Erie's ecosystems have been adversely impacted by recurring toxic algal blooms. These algal blooms are attributed to nitrogen (N) and phosphorus pollution from agricultural runoff. Despite recent efforts to reduce N application in the Lake Erie basin, high levels of N concentration persist in surface and groundwater systems. One of the reasons for this apparent stasis in N concentrations is legacy stores of N in landscapes that contribute to lag times in water quality response, even after inputs have ceased. Legacy N is stored in the soil and slow-moving groundwater and makes up a large portion of current N contamination. Here, we aim to quantify N legacies across the entire Lake Erie basin to predict time lags in water quality improvements in surface and groundwater. We use a process-based model, ELEMeNT, to quantify legacy N stores and watershed-scale N dynamics over the past century across the basin. Such models inform nutrient management practices across the Lake Erie basin by explicitly incorporating legacy dynamics. Our study shows that N surplus (the difference between N inputs and non-hydrological N outputs) has been rising across most Lake Erie sub-watersheds since 1950 and has only started to plateau or decrease around 2000. Agricultural inputs from manure, fertilizer, and biological fixation were the lead contributors to N surplus in agricultural sub-watersheds, and domestic N was the lead N contributor in urban sub-watersheds. Since 1950, between 4% and 44% of N has been stored as legacy N (23% median). On average, 92% of this N legacy is retained in the soil and 8% is in the groundwater. Through correlation analysis, we have found that higher fractions of groundwater N and SON legacy accumulation are correlated with slower travel times and lower tile drainage, while wastewater denitrification emerged as the dominant component in urban sub-watersheds. These results provide insight into drivers of legacy N and N release in sub-watersheds, which could aid in targeted nutrient management across the watershed.This research was undertaken thanks, in part, with support from the Global Water Futures Program funded by the Canada First Research Excellence Fund (CFREF

    A diagnostic approach to constraining flow partitioning in hydrologic models using a multiobjective optimization framework

    Get PDF
    © American Geophysical Union: Shafii, M., Basu, N., Craig, J. R., Schiff, S. L., & Van Cappellen, P. (2017). A diagnostic approach to constraining flow partitioning in hydrologic models using a multiobjective optimization framework. Water Resources Research, 53(4), 3279–3301. https://doi.org/10.1002/2016WR019736Hydrologic models are often tasked with replicating historical hydrographs but may do so without accurately reproducing the internal hydrological functioning of the watershed, including the flow partitioning, which is critical for predicting solute movement through the catchment. Here we propose a novel partitioning-focused calibration technique that utilizes flow-partitioning coefficients developed based on the pioneering work of L'vovich (1979). Our hypothesis is that inclusion of the L'vovich partitioning relations in calibration increases model consistency and parameter identifiability and leads to superior model performance with respect to flow partitioning than using traditional hydrological signatures (e.g., flow duration curve indices) alone. The L'vovich approach partitions the annual precipitation into four components (quick flow, soil wetting, slow flow, and evapotranspiration) and has been shown to work across a range of climatic and landscape settings. A new diagnostic multicriteria model calibration methodology is proposed that first quantifies four calibration measures for watershed functions based on the L'vovich theory, and then utilizes them as calibration criteria. The proposed approach is compared with a traditional hydrologic signature-based calibration for two conceptual bucket models. Results reveal that the proposed approach not only improves flow partitioning in the model compared to signature-based calibration but is also capable of diagnosing flow-partitioning inaccuracy and suggesting relevant model improvements. Furthermore, the proposed partitioning-based calibration approach is shown to increase parameter identifiability. This model calibration approach can be readily applied to other models. Plain Language Summary Hydrologic models are often tasked with replicating historical hydrographs but may do so without accurately reproducing the internal hydrological functioning of the watershed, including the flow partitioning between low and high flows, which is critical for predicting solute movement through the catchment. Here we propose a novel model calibration framework that utilizes an empirical understanding about flow partitioning developed by L'vovich (1979) to constrain the outcomes of watershed models. Our hypothesis is that this approach increases model consistency leads to superior model performance. This method is also capable of diagnosing model structural errors (in flow partitioning) and suggesting relevant model improvements. Overall, this work is a step toward getting the right answer from hydrologic model for the right reasons.NSERC Strategic Partnership grant [STPGP-447692-2013]Canada Excellence Research Chair in Ecohydrology in the Department of Earth and Environmental Sciences at University of Waterlo

    Legacy Phosphorus Across Canada: Insights from a 60-Year Dataset

    Get PDF
    Human activities over decades of agriculture and urbanization have altered phosphorus (P) cycling, posing a threat to water quality and ecosystem function. Algal blooms have become a pervasive problem in both small and large waterbodies across Canada. Despite concerted efforts to reduce P loading to surface waters, there has yet to be a noticeable improvement in water quality. This can be attributed to the accumulation of legacy P in the landscape as a result of excessive use of synthetic fertilizers and the production of livestock manure. These legacy P can reach the waterbodies decades after implementing P management practices. Therefore, to better understand long-term P dynamics and their drivers, it is crucial to develop long-term datasets of P inputs and outputs. We developed a 60-year (1961–2021), 250-meter grid resolution data of P components and P surplus across Canada. P surplus is the difference between P inputs (fertilizer inputs, livestock manure, detergent, and human waste) and non-hydrological P output (crop uptake). Our result shows the different drivers of P surplus across Canada. In Ontario and Quebec, the P surplus decreased from nutrient regulation programs in 1981 and subsequently rebounded in 2006 due to an increase in P fertilizer use. In prairie provinces, low P inputs and increasing crop yields have led to the mining of the P stores in the soils. This new, longer dataset will improve our understanding of long-term P dynamics and allow for explicit consideration of the impacts of legacy P on environmental outcomes.This research was undertaken thanks, in part, with support from the Global Water Futures Program funded by the Canada First Research Excellence Fund (CFREF)

    Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements

    Get PDF
    High-frequency water quality measurements in streams and rivers have expanded in scope and sophistication during the last two decades. Existing technology allows in situ automated measurements of water quality constituents, including both solutes and particulates, at unprecedented frequencies from seconds to subdaily sampling intervals. This detailed chemical information can be combined with measurements of hydrological and biogeochemical processes, bringing new insights into the sources, transport pathways, and transformation processes of solutes and particulates in complex catchments and along the aquatic continuum. Here, we summarize established and emerging high-frequency water quality technologies, outline key high-frequency hydrochemical data sets, and review scientific advances in key focus areas enabled by the rapid development of high-frequency water quality measurements in streams and rivers. Finally, we discuss future directions and challenges for using high-frequency water quality measurements to bridge scientific and management gaps by promoting a holistic understanding of freshwater systems and catchment status, health, and function

    Diagnostic accuracy of commercially available immunochromatographic rapid tests for diagnosis of dengue in India.

    Get PDF
    BACKGROUND & OBJECTIVES: There is limited evidence regarding the accuracy of dengue rapid diagnostic kits despite their extensive use in India. We evaluated the performance of four immunochromatographic Rapid Diagnostic Test (RDTs) kits: Multisure dengue Ab/Ag rapid test (MP biomedicals; MP), Dengucheck combo (Zephyr Biomedicals; ZB), SD bioline dengue duo (Alere; SD) and Dengue day 1 test (J Mitra; JM). METHODS: This is a laboratory-based diagnostic evaluation study. Rapid tests results were compared to reference non-structural (NS1) antigen or immunoglobulin M (IgM) enzyme-linked immunosorbent assay (ELISA) results of 241 dengue-positive samples and 247 dengue-negative samples. Sensitivity and specificity of NS1 and IgM components of each RDT were calculated separately and in combination (either NS1 or IgM positive) against reference standard ELISA. RESULTS: A total of 238, 226, 208, and 146 reference NS1 ELISA samples were tested with MP, ZB, SD, and JM tests, respectively. In comparison to the NS1 ELISA reference tests, the NS1 component of MP, ZB, SD, and JM RDTs demonstrated a sensitivity of 71.8%, 85.1%, 77.2% and 80.9% respectively and specificity of 90.1%, 92.8%, 96.1 %, and 93.6%, respectively. In comparison to the IgM ELISA reference test, the IgM component of RDTs showed a sensitivity of 40.0%, 50.3%, 47.3% and 20.0% respectively and specificity of 92.4%, 88.6%, 96.5%, and 92.2% respectively. Combining NS1 antigen and IgM antibody results led to sensitivities of 87.5%, 82.9%, 93.8% and 91.7% respectively, and specificities of 75.3%, 73.9%, 76.5%, and 80.0% respectively. INTERPRETATION & CONCLUSION: Though specificities were acceptable, the sensitivities of each test were markedly lower than manufacturers' claims. These results also support the added value of combined antigen-and antibody-based RDTs for the diagnosis of acute dengue

    Increasing Trends of Leptospirosis in Northern India: A Clinico-Epidemiological Study

    Get PDF
    Leptospirosis is often not suspected by physicians in patients with acute febrile illnesses reporting from supposedly “non-endemic areas,” including north India. Clinical manifestations are protean, and complications can affect most organ systems, including liver, kidneys, lungs, and the central nervous system. Timely diagnosis and specific therapy can reduce severity of illness and, in turn, mortality. In this study conducted at a tertiary care center in north India, we find how a much-neglected disease entity has emerged as a major cause of acute febrile illness in a so called “non-endemic area.” Incidence is increasing yearly. The majority of patients were from a rural background, and were farmers or farm labourers. Poor hygiene, contact with animals, rat infestation of houses, and contact with stagnant dirty water are the major determinants of disease. Apart from the usual symptoms of intermittent fever with chill and rigor, hepatosplenomegaly, renal decompensation, muscle pain and tenderness, and conjunctival suffusion, signs and symptoms indicating involvement of the respiratory and central nervous systems were also commonly observed. Severe complications resulting in mortality do occur and is especially due to late suspicion among primary level physicians, and the resulting inappropriate therapy

    Great Lakes Runoff Intercomparison Project Phase 3: Lake Erie (GRIP-E)

    Get PDF
    Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside excessive nutrient loads that have contributed to lake eutrophication. Understanding the sources and pathways of flows is critical to solve the complex issues facing this watershed. Seventeen hydrologic and land-surface models of different complexity are set up over this domain using the same meteorological forcings, and their simulated streamflows at 46 calibration and seven independent validation stations are compared. Results show that: (1) the good performance of Machine Learning models during calibration decreases significantly in validation due to the limited amount of training data; (2) models calibrated at individual stations perform equally well in validation; and (3) most distributed models calibrated over the entire domain have problems in simulating urban areas but outperform the other models in validation
    corecore