131 research outputs found
On Hoyle-Narlikar-Wheeler mechanism of vibration energy powered magneto-dipole emission of neutron stars
We revisit the well-known Hoyle-Narlikar-Wheeler proposition that neutron
star emerging in the magnetic-flux-conserving process of core-collapse
supernova can convert the stored energy of Alfven vibrations into power of
magneto-dipole radiation. We show that the necessary requirement for the energy
conversion is the decay of internal magnetic field. In this case the loss of
vibration energy of the star causes its vibration period, equal to period of
pulsating emission, to lengthen at a rate proportional to the rate of magnetic
field decay. These prediction of the model of vibration powered neutron star
are discussed in juxtaposition with data on pulsating emission of magnetars
whose radiative activity is generally associated with the decay of ultra strong
magnetic field.Comment: Accepted for publication in Astrophysics & Space Scienc
Alfven node-free vibrations of white dwarf in the model of solid star with toroidal magnetic field
In the context of the white dwarf asteroseismology, we investigate
vibrational properties of a non-convective solid star with an axisymmetric
purely toroidal intrinsic magnetic field of two different shapes. Focus is laid
on regime of node-free global Lorentz-force-driven vibrations about symmetry
axis at which material displacements have one and the same form as those for
nodeless spheroidal and torsional vibrations restored by Hooke's force of
elastic shear stresses. Particular attention is given to the even-parity
poloidal Alfven modes whose frequency spectra are computed in analytic form
showing how the purely toroidal magnetic fields completely buried beneath the
star surface can manifest itself in seismic vibrations of non-magnetic white
dwarfs. The obtained spectral formulae are discussed in juxtaposition with
those for Alfven modes in the solid star model with the poloidal, homogeneous
internal and dipolar external, magnetic field whose inferences are relevant to
Alfven vibrations in magnetic white dwarfs.Comment: Accepted for publication in Astrophysics & Space Scienc
Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star
Magneto-solid-mechanical model of two-component, core-crust, paramagnetic
neutron star responding to quake-induced perturbation by differentially
rotational, torsional, oscillations of crustal electron-nuclear solid-state
plasma about axis of magnetic field frozen in the immobile paramagnetic core is
developed. Particular attention is given to the node-free torsional
crust-against-core vibrations under combined action of Lorentz magnetic and
Hooke's elastic forces; the damping is attributed to Newtonian force of shear
viscose stresses in crustal solid-state plasma. The spectral formulae for the
frequency and lifetime of this toroidal mode are derived in analytic form and
discussed in the context of quasi-periodic oscillations of the X-ray outburst
flux from quaking magnetars. The application of obtained theoretical spectra to
modal analysis of available data on frequencies of oscillating outburst
emission suggests that detected variability is the manifestation of crustal
Alfven's seismic vibrations restored by Lorentz force of magnetic field
stresses.Comment: 10 pages, 10 figure
Pairing effects in low density domain of nuclear matter
Using equations, governing np pairing correlations in S=1, T=0 pairing
channel (PRC 63 (2001) 021304(R)), it is shown that at low densities equations
for the energy gap in the spectrum of quasiparticles and chemical potentials of
protons and neutrons allow solutions with negative chemical potential. This
corresponds to appearance of Bose--Einstein condensate (BEC) of deuterons in
low density region of nuclear matter.Comment: 4 pages, 3 figure
Asteroseismology of Vibration Powered Neutron Stars
Chapter from the book "Astrophysics", p.287-308. Edited by Ibrahim Kucuk,
ISBN 978-953-51-0473-5, InTech, March 3, 2012.Comment: http://cdn.intechopen.com/pdfs/34269/InTech-Asteroseismology_of_vibration_powered_neutron_stars.pd
Torsional nodeless vibrations of quaking neutron star restored by combined forces of shear elastic and magnetic field stresses
Within the framework of Newtonian magneto-solid-mechanics, relying on
equations appropriate for a perfectly conducting elastic continuous medium
threaded by a uniform magnetic field, the asteroseismic model of a neutron star
undergoing axisymmetric global torsional nodeless vibrations under the combined
action of Hooke's elastic and Lorentz magnetic forces is considered with
emphasis on a toroidal Alfv\'en mode of differentially rotational vibrations
about the dipole magnetic moment axis of the star. The obtained spectral
equation for frequency is applied to -pole identification of
quasi-periodic oscillations (QPOs) of X-ray flux during the giant flares of SGR
1806-20 and SGR 1900+14. Our calculations suggest that detected QPOs can be
consistently interpreted, within the framework of this model, as produced by
global torsional nodeless vibrations of quaking magnetar if they are considered
to be restored by the joint action of bulk forces of shear elastic and magnetic
field stresses.Comment: 18 pages, 5 figures; accepted in Ap
- …
