18 research outputs found

    Assessment of the stability of LTA zeolites under natural gas drying TSA conditions.

    Get PDF
    The main features in cationic LTA zeolites that are likely to impact its potential hydrothermal stability are interconnected. The Al content and the compensating cation play an important role in the water adsorption but their influence on the zeolite performance in thermal cycles is yet to be understood. In this study, four LTA zeolite samples were synthetized with distinct Si/Al ratios in sodium and potassium forms. They underwent a Premature Aging Protocol (PAP) that took into account the operating conditions typically found in temperature swing adsorption processes. The Si/Al ratio per se did not impact in the crystallinity upon aging, but the presence of a high amount of potassium cations (Si/Al = 1) led to the amorphization of the zeolite structure. The results from XPS and NMR techniques indicate the Al migration from the outer surface to the inner cages occurs upon aging. Chemical analysis by XRF and ICP-OES associated with 27Al NMR analysis reveal that the presence of EFAl is particularly significant in the sample with the largest Si/Al ratio (5) and is correlated to a much larger C deposition upon aging. TG/DTG and TPD-NH3 experiments suggest that acid sites in the zeolite structures act as a double-edged sword, by enhancing water adsorption while also leading to carbon accumulation. CO2 isotherms at 0 ÂșC reveal the reduction of the microporosity after aging, whereas the Al content is proportional to the water adsorption uptake, particularly at low pressures (below 10 mbar). The material with an intermediate Si/Al ratio and in Na-form (LTAc-SiAl2-Na) combines excellent hydrothermal stability with a high-water affinity and uptake.Funding for open access charge: Universidad de MĂĄlaga / CBU

    Dynamic bed measurements of CO adsorption on microporous adsorbents at high pressures for hydrogen purification processes

    Get PDF
    Regarding the importance of adsorptive removal of carbon monoxide from hydrogen-rich mixtures for novel applications (e.g. fuel cells), this work provides a series of experimental data on adsorption isotherms and breakthrough curves of carbon monoxide. Three recently developed 5A zeolites and one commercial activated carbon were used as adsorbents. Isotherms were measured gravimetrically at temperatures of 278–313 K and pressures up to 0.85 MPa. Breakthrough curves of CO were obtained from dynamic column measurements at temperatures of 298–301 K, pressures ranging from 0.1 MPa to ca. 6 MPa and concentrations of CO in H2/CO mixtures of 5–17.5 mol%. A simple mathematical model was developed to simulate breakthrough curves on adsorbent beds using measured and calculated data as inputs. The number of parameters and the use of correlations to evaluate them were restricted in order to focus the importance of measured values. For the given assumptions and simplifications, the results show that the model predictions agree satisfactorily with the experimental data at the different operating conditions applied

    Dynamic bed measurements of CO adsorption on microporous adsorbents at high pressures for hydrogen purification processes

    No full text
    Regarding the importance of adsorptive removal of carbon monoxide from hydrogen-rich mixtures for novel applications (e.g. fuel cells), this work provides a series of experimental data on adsorption isotherms and breakthrough curves of carbon monoxide. Three recently developed 5A zeolites and one commercial activated carbon were used as adsorbents. Isotherms were measured gravimetrically at temperatures of 278–313 K and pressures up to 0.85 MPa. Breakthrough curves of CO were obtained from dynamic column measurements at temperatures of 298–301 K, pressures ranging from 0.1 MPa to ca. 6 MPa and concentrations of CO in H2/CO mixtures of 5–17.5 mol%. A simple mathematical model was developed to simulate breakthrough curves on adsorbent beds using measured and calculated data as inputs. The number of parameters and the use of correlations to evaluate them were restricted in order to focus the importance of measured values. For the given assumptions and simplifications, the results show that the model predictions agree satisfactorily with the experimental data at the different operating conditions applied

    Breakthrough curves of methane at high pressures for H2 purification processes

    No full text
    This work provides a series of methane adsorption isotherms and breakthrough curves on one 5A zeolite and one activated carbon. Breakthrough curves of CH4 were obtained from dynamic column measurements at different temperature and pressure conditions for concentrations of 4.4 – 17.3 mol.‐% in H2/CH4 mixtures. A simple model was developed to simulate the curves using measured and calculated data inputs. The results show that the model predictions agree very well with the experiments

    Assessment of hydrogen storage by physisorption in porous materials

    No full text
    As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1

    Insights on the Mechanisms of H<sub>2</sub>S Retention at Low Concentration on Impregnated Carbons

    No full text
    Adsorption of H<sub>2</sub>S onto porous materials is as an attractive technology for fine biogas cleaning. Three activated carbon samples were studied as adsorbents for biogas desulfurization at low concentration (100 ppm), in order to better understand the underlying mechanisms and provide a basis for the development of new materials. One of the carbons is impregnated with NaOH, another with Fe<sub>2</sub>O<sub>3</sub> and the third one is the parent material. Molecular simulation was performed to distinguish the retention mechanism. Textural characterization revealed high surface areas and the existence of ultramicropores with sizes below 4 Å in all samples. The possibility of discriminating the retention regimes emphasized the great influence of the chemisorption in these systems increasing up to 50 times the capacity of retention of H<sub>2</sub>S for the sodium-impregnated sample (from 0.3 to 15.64 mg g<sup>–1</sup>). Surprisingly, both physisorption and chemisorption could be unequivocally detected for the nonimpregnated sample by evaluating breakthrough curves in different temperatures (up to 423 K). The evaluation of regeneration by heat indicated that the adsorbents can recover about 50% and 20% of their initial capacity for nonimpregnated and impregnated samples, respectively
    corecore