167 research outputs found
Post-sigh sleep apneas in mice: Systematic review and data-driven definition
Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake\u2013sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively
Early-life nicotine or cotinine exposure produces long-lasting sleep alterations and downregulation of hippocampal corticosteroid receptors in adult mice
Early-life exposure to environmental toxins like tobacco can permanently re-program body structure and function. Here, we investigated the long-term effects on mouse adult sleep phenotype exerted by early-life exposure to nicotine or to its principal metabolite, cotinine. Moreover, we investigated whether these effects occurred together with a reprogramming of the activity of the hippocampus, a key structure to coordinate the hormonal stress response. Adult male mice born from dams subjected to nicotine (NIC), cotinine (COT) or vehicle (CTRL) treatment in drinking water were implanted with electrodes for sleep recordings. NIC and COT mice spent significantly more time awake than CTRL mice at the transition between the rest (light) and the activity (dark) period. NIC and COT mice showed hippocampal glucocorticoid receptor (GR) downregulation compared to CTRL mice, and NIC mice also showed hippocampal mineralocorticoid receptor downregulation. Hippocampal GR expression significantly and inversely correlated with the amount of wakefulness at the light-to-dark transition, while no changes in DNA methylation were found. We demonstrated that early-life exposure to nicotine (and cotinine) concomitantly entails long-lasting reprogramming of hippocampal activity and sleep phenotype suggesting that the adult sleep phenotype may be modulated by events that occurred during that critical period of life
Obstructive sleep apneas naturally occur in mice during REM sleep and are highly prevalent in a mouse model of Down syndrome
Study objectives: The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. Methods: In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. Results: OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. Conclusions: Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies
Neural control of fasting-induced torpor in mice
Torpor is a peculiar mammalian behaviour, characterized by the active reduction of metabolic rate, followed by a drop in body temperature. To enter torpor, the activation of all thermogenic organs that could potentially defend body temperature must be prevented. Most of these organs, such as the brown adipose tissue, are controlled by the key thermoregulatory region of the Raphe Pallidus (RPa). Currently, it is not known which brain areas mediate the entrance into torpor. To identify these areas, the expression of the early gene c-Fos at torpor onset was assessed in different brain regions in mice injected with a retrograde tracer (Cholera Toxin subunit b, CTb) into the RPa region. The results show a network of hypothalamic neurons that are specifically activated at torpor onset and a direct torpor-specific projection from the Dorsomedial Hypothalamus to the RPa that could putatively mediate the suppression of thermogenesis during torpor
On the short-term response of entrained air bubbles in the upper ocean: a case study in the north Adriatic Sea
Air bubbles in the upper ocean are generated mainly by waves breaking at the air–sea interface. As such, after the waves break, entrained air bubbles evolve in the form of plumes in the turbulent flow, exchange gas with the surrounding water, and may eventually rise to the surface. To shed light on the short-term response of entrained bubbles in different stormy conditions and to assess the link between bubble plume penetration depth, mechanical and thermal forcings, and the air–sea transfer velocity of CO2, a field experiment was conducted from an oceanographic research tower in the north Adriatic Sea. Air bubble plumes were observed using high-resolution echosounder data from an upward-looking 1000 kHz sonar. The backscatter signal strength was sampled at a high resolution, 0.5 s in time and 2.5 cm along the vertical direction. Time series profiles of the bubble plume depth were established using a variable threshold procedure applied to the backscatter strength. The data show the occurrence of bubbles organized into vertical plume-like structures, drawn downwards by wave-generated turbulence and other near-surface circulations, and reaching the seabed at 17 m depth under strong forcing. We verify that bubble plumes adapt rapidly to wind and wave conditions and have depths that scale approximately linearly with wind speed. Scaling with the wind–wave Reynolds number is also proposed to account for the sea-state severity in the plume depth prediction. Results show a correlation between measured bubble depths and theoretical air–sea CO2 transfer velocity parametrized with wind-only and wind/wave formulations. Further, our measurements corroborate previous results suggesting that the sinking of newly formed cold-water masses helps bring bubbles to greater depths than those reached in stable conditions for the water column. The temperature difference between air and sea seems sufficient for describing this intensification at the leading order of magnitude. The results presented in this study are relevant for air–sea interaction studies and pave the way for progress in CO2 gas exchange formulations.</p
Clinical implications of basic research; the role of orexin neurons in the central autonomic network.
Narcolepsy type 1 (NT1) and, to a lesser extent, neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, entail the loss of the hypothalamic neurons that release the hypocretin/orexin (H/O) neuropeptides. NT1 has been associated with autonomic anomalies including alterations in temperature regulation and cardiovascular control, particularly during sleep. A spectrum of autonomic dysfunctions also characterizes neurodegenerative diseases. The central autonomic network (CAN) is an interconnected set of brain structures that are critical for the control of autonomic preganglionic neurons. The H/O neurons include pre-autonomic neurons that directly target preganglionic sympathetic neurons in the intermediolateral column of the spinal cord and parasympathetic neurons in the dorsal motor nucleus of the vagus nerve. The H/O neurons also project to and modulate the activity of other CAN structures that include pre-autonomic neurons, such as the rostral ventromedial medulla and caudal raphe nuclei, the rostral ventrolateral medulla and the hypothalamic paraventricular nucleus. In addition, the H/O neurons project to and modulate the activity of neurons in the nucleus of the solitary tract in the medulla, which receives and relays visceral afferent information, and in higher order structures of the CAN, such as the dorsomedial nucleus of the hypothalamus and the extended amygdala. The H/O neurons should, therefore, be regarded as a key component of the CAN. Functional alterations of the CAN due to H/O neuron deficiency might contribute to autonomic anomalies in patients with neurodegenerative diseases and are likely to underlie autonomic anomalies in patients with NT1
- …