5 research outputs found

    Evaluating the Plausible Range of N2O Biosignatures on Exo-Earths: An Integrated Biogeochemical, Photochemical, and Spectral Modeling Approach

    Full text link
    Nitrous oxide (N2O) -- a product of microbial nitrogen metabolism -- is a compelling exoplanet biosignature gas with distinctive spectral features in the near- and mid-infrared, and only minor abiotic sources on Earth. Previous investigations of N2O as a biosignature have examined scenarios using Earthlike N2O mixing ratios or surface fluxes, or those inferred from Earth's geologic record. However, biological fluxes of N2O could be substantially higher, due to a lack of metal catalysts or if the last step of the denitrification metabolism that yields N2 from N2O had never evolved. Here, we use a global biogeochemical model coupled with photochemical and spectral models to systematically quantify the limits of plausible N2O abundances and spectral detectability for Earth analogs orbiting main-sequence (FGKM) stars. We examine N2O buildup over a range of oxygen conditions (1%-100% present atmospheric level) and N2O fluxes (0.01-100 teramole per year; Tmol = 10^12 mole) that are compatible with Earth's history. We find that N2O fluxes of 10 [100] Tmol yr−1^{-1} would lead to maximum N2O abundances of ~5 [50] ppm for Earth-Sun analogs, 90 [1600] ppm for Earths around late K dwarfs, and 30 [300] ppm for an Earthlike TRAPPIST-1e. We simulate emission and transmission spectra for intermediate and maximum N2O concentrations that are relevant to current and future space-based telescopes. We calculate the detectability of N2O spectral features for high-flux scenarios for TRAPPIST-1e with JWST. We review potential false positives, including chemodenitrification and abiotic production via stellar activity, and identify key spectral and contextual discriminants to confirm or refute the biogenicity of the observed N2O.Comment: 22 pages, 17 figures; ApJ, 937, 10

    Retrievals Applied to a Decision Tree Framework Can Characterize Earthlike Exoplanet Analogs

    No full text
    Exoplanet characterization missions planned for the future will soon enable searches for life beyond our solar system. Critical to the search will be the development of life detection strategies that can search for biosignatures while maintaining observational efficiency. In this work, we adopted a newly developed biosignature decision tree strategy for remote characterization of Earthlike exoplanets. The decision tree offers a step-by-step roadmap for detecting exoplanet biosignatures and excluding false positives, based on Earth’s biosphere and its evolution over time. We followed the pathways for characterizing a modern-Earth-like planet and an Archean-Earth-like planet and evaluated the observational trades associated with coronagraph bandpass combinations of designs consistent with the Habitable Worlds Observatory precursor studies. With retrieval analyses of each bandpass (or combination), we demonstrate the utility of the decision tree and evaluate the uncertainty on a suite of biosignature chemical species and habitability indicators (i.e., the gas abundances of H _2 O, O _2 , O _3 , CH _4 , and CO _2 ). Notably for modern Earth, less than an order of magnitude spread in the 1 σ uncertainties was achieved for the abundances of H _2 O and O _2 , planetary surface pressure, and atmospheric temperature, with three strategically placed bandpasses (two in the visible and one in the near-infrared). For the Archean, CH _4 and H _2 O were detectable in the visible with a single bandpass

    Source Data for Manuscript: "Retrievals Applied To A Decision Tree Framework Can Characterize Earth-like Exoplanet Analogs"

    No full text
    <p>This dataset accompanies the manuscript entitled: "Retrievals Applied To A Decision Tree Framework Can Characterize Earth-like Exoplanet Analogs", which was accepted for publication in the Planetary Science Journal. Included are the source files for all figures included in the paper.</p&gt

    Exoplanet Volatile Carbon Content as a Natural Pathway for Haze Formation

    No full text
    We explore terrestrial planet formation with a focus on the supply of solid-state organics as the main source of volatile carbon. For the water-poor Earth, the water ice line, or ice sublimation front, within the planet-forming disk has long been a key focal point. We posit that the soot line, the location where solid-state organics are irreversibly destroyed, is also a key location within the disk. The soot line is closer to the host star than the water snow line and overlaps with the location of the majority of detected exoplanets. In this work, we explore the ultimate atmospheric composition of a body that receives a major portion of its materials from the zone between the soot line and water ice line. We model a silicate-rich world with 0.1% and 1% carbon by mass with variable water content. We show that as a result of geochemical equilibrium, the mantle of these planets would be rich in reduced carbon but have relatively low water (hydrogen) content. Outgassing would naturally yield the ingredients for haze production when exposed to stellar UV photons in the upper atmosphere. Obscuring atmospheric hazes appear common in the exoplanetary inventory based on the presence of often featureless transmission spectra. Such hazes may be powered by the high volatile content of the underlying silicate-dominated mantle. Although this type of planet has no solar system counterpart, it should be common in the galaxy with potential impact on habitability
    corecore