26 research outputs found

    Hot chemistry and physics in the planet-forming zones of disks

    Get PDF
    The different chapters cover studies in which the physical structures of the gas such as temperature, densities and movements of the gas are estimated. In addition chemical characteristics of the gas such as different molecular abundances and their spatial distribution are defined. This information is discussed in the context of how the chemical evolution of the gas in the planet-forming region progress and how this affects which type of planets that can form there. The results are mainly based on infrared observations and radiative transfer disk models.NWOUBL - phd migration 201

    A bright, high rotation-measure FRB that skewers the M33 halo

    Get PDF
    We report the detection of a bright fast radio burst, FRB\,191108, with Apertif on the Westerbork Synthesis Radio Telescope (WSRT). The interferometer allows us to localise the FRB to a narrow 5\arcsec\times7\arcmin ellipse by employing both multibeam information within the Apertif phased-array feed (PAF) beam pattern, and across different tied-array beams. The resulting sight line passes close to Local Group galaxy M33, with an impact parameter of only 18\,kpc with respect to the core. It also traverses the much larger circumgalactic medium of M31, the Andromeda Galaxy. We find that the shared plasma of the Local Group galaxies could contribute \sim10\% of its dispersion measure of 588\,pc\,cm3^{-3}. FRB\,191108 has a Faraday rotation measure of +474\,±3\pm\,3\,rad\,m2^{-2}, which is too large to be explained by either the Milky Way or the intergalactic medium. Based on the more moderate RMs of other extragalactic sources that traverse the halo of M33, we conclude that the dense magnetised plasma resides in the host galaxy. The FRB exhibits frequency structure on two scales, one that is consistent with quenched Galactic scintillation and broader spectral structure with Δν40\Delta\nu\approx40\,MHz. If the latter is due to scattering in the shared M33/M31 CGM, our results constrain the Local Group plasma environment. We found no accompanying persistent radio sources in the Apertif imaging survey data

    Proteomic technology for biomarker profiling in cancer: an update

    No full text
    The progress in the understanding of cancer progression and early detection has been slow and frustrating due to the complex multifactorial nature and heterogeneity of the cancer syndrome. To date, no effective treatment is available for advanced cancers, which remain a major cause of morbidity and mortality. Clearly, there is urgent need to unravel novel biomarkers for early detection. Most of the functional information of the cancer-associated genes resides in the proteome. The later is an exceptionally complex biological system involving several proteins that function through posttranslational modifications and dynamic intermolecular collisions with partners. These protein complexes can be regulated by signals emanating from cancer cells, their surrounding tissue microenvironment, and/or from the host. Some proteins are secreted and/or cleaved into the extracellular milieu and may represent valuable serum biomarkers for diagnosis purpose. It is estimated that the cancer proteome may include over 1.5 million proteins as a result of posttranslational processing and modifications. Such complexity clearly highlights the need for ultra-high resolution proteomic technology for robust quantitative protein measurements and data acquisition. This review is to update the current research efforts in high-resolution proteomic technology for discovery and monitoring cancer biomarkers
    corecore