85 research outputs found

    Analysis of sequence variability and transcriptional profile of cannabinoid synthase genes in cannabis sativa l. Chemotypes with a focus on cannabichromenic acid synthase

    Get PDF
    Cannabis sativa L. has been long cultivated for its narcotic potential due to the accumulation of tetrahydrocannabinolic acid (THCA) in female inflorescences, but nowadays its production for fiber, seeds, edible oil and bioactive compounds has spread throughout the world. However, some hemp varieties still accumulate traces of residual THCA close to the 0.20% limit set by European Union, despite the functional gene encoding for THCA synthase (THCAS) is lacking. Even if some hypotheses have been produced, studies are often in disagreement especially on the role of the cannabichromenic acid synthase (CBCAS). In this work a set of European Cannabis genotypes, representative of all chemotypes, were investigated from a chemical and molecular point of view. Highly specific primer pairs were developed to allow an accurate distinction of different cannabinoid synthases genes. In addition to their use as markers to detect the presence of CBCAS at genomic level, they allowed the analysis of transcriptional profiles in hemp or marijuana plants. While the high level of transcription of THCAS and cannabidiolic acid synthase (CBDAS) clearly reflects the chemical phenotype of the plants, the low but stable transcriptional level of CBCAS in all genotypes suggests that these genes are active and might contribute to the final amount of cannabinoids

    Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant (S. Melongena L.)

    Get PDF
    Here we focus on the highly conserved MYB-bHLH-WD repeat (MBW) transcriptional complex model in eggplant, which is pivotal in the transcriptional regulation of the anthocyanin biosynthetic pathway. Through a genome-wide approach performed on the recently released Eggplant Genome (cv. 67/3) previously identified, and reconfirmed by us, members belonging to the MBW complex (SmelANT1, SmelAN2, SmelJAF13, SmelAN1) were functionally characterized. Furthermore, a regulatory R3 MYB type repressor (SmelMYBL1), never reported before, was identified and characterized as well. Through a qPCR approach, we revealed specific transcriptional patterns of candidate genes in different plant tissue/organs at two stages of fruit development. Two strategies were adopted for investigating the interactions of bHLH partners (SmelAN1, SmelJAF13) with MYB counterparts (SmelANT1, SmelAN2 and SmelMYBL1): Yeast Two Hybrid (Y2H) and Bimolecular Fluorescent Complementation (BiFC) in A. thaliana mesophylls protoplast. Agro-infiltration experiments highlighted that N. benthamiana leaves transiently expressing SmelANT1 and SmelAN2 showed an anthocyanin-pigmented phenotype, while their co-expression with SmelMYBL1 prevented anthocyanin accumulation. Our results suggest that SmelMYBL1 may inhibits the MBW complex via the competition with MYB activators for bHLH binding site, although this hypothesis requires further elucidation

    A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution

    Get PDF
    With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S. lycopersicum), potato (S. tuberosum) and pepper (Capsicum annuum) highlighted the rapid evolution of miRNA:mRNA regulatory pairs and R-type defense genes in the Solanaceae, and provided a genomic basis for the lack of steroidal glycoalkaloid compounds in the Capsicum genus. Using parsimony methods, we reconstructed the putative chromosomal complements of the key founders of the main Solanaceae clades and the rearrangements that led to the karyotypes of extant species and their ancestors. From 10% to 15% of the genes present in the four genomes were syntenic paralogs (ohnologs) generated by the pre-γ, γ and T paleopolyploidy events, and were enriched in transcription factors. Our data suggest that the basic gene network controlling fruit ripening is conserved in different Solanaceae clades, and that climacteric fruit ripening involves a differential regulation of relatively few components of this network, including CNR and ethylene biosynthetic genes

    Different tool training induces specific effects on body metric representation

    Get PDF
    Morphology and functional aspects of the tool have been proposed to be critical factors modulating tool use-induced plasticity. However, how these aspects contribute to changing body representation has been underinvestigated. In the arm bisection task, participants have to estimate the length of their own arm by indicating its midpoint, a paradigm used to investigate the representation of the metric properties of the body. We employed this paradigm to investigate the impact of different actions onto tool embodiment. Our findings suggest that a training requiring actions mostly with proximal (shoulder) or distal (wrist) parts induces a different shift in the perceived arm midpoint. This effect is independent of, but enhanced by, the use of the tool during the training and in part influenced by specific demands of the task. These results suggest that specific motor patterns required by the training can induce different changes of body representation, calling for rethinking the concept of tool embodiment, which would be characterized not simply by the morphology of the tools, but also by the actions required for their specific use

    Spatial limits of visuotactile interactions in the presence and absence of tactile stimulation

    Get PDF
    The presence of a light flash near to the body not only increases the ability to detect a weak touch but also increases reports of feeling a weak touch that did not occur. The somatic signal detection task (SSDT) provides a behavioural marker by which to clarify the spatial extent of such visuotactile interactions in peripersonal space. Whilst previous evidence suggests a limit to the spatial extent over which visual input can distort the perception of tactile stimulation during the rubber hand illusion, the spatial boundaries of light-induced tactile sensations are not known. In a repeated measures design, 41 participants completed the SSDT with the light positioned 1 cm (near), 17.5 cm (mid) or 40 cm (far) from the tactile stimulation. In the far condition, the light did not affect hit, or false alarm rates during the SSDT. In the near and mid conditions, the light significantly increased hit rates and led to a more liberal response criterion, that is, participants reported feeling the touch more often regardless of whether or not it actually occurred. Our results demonstrate a spatial boundary over which visual input influences veridical and non-veridical touch perception during the SSDT, and provide further behavioural evidence to show that the boundaries of the receptive fields of visuotactile neurons may be limited to reach space

    Tomato (Solanum lycopersicum L.) in the service of biotechnology

    Full text link

    Thermal-Perception-Driven Adaptive Design for Wellbeing in Outdoor Public Spaces: Case Studies in Naples

    No full text
    The spread of digital technologies, aiming at improving the effectiveness of the technological and environmental project proposals, has transformed the modus operandi for architects and designers who approach environmental impact assessment, especially about public space designs. Research activities aim at collecting guidelines for the sustainable regeneration of public spaces, focusing on the effectiveness of the performance of individual actions proposed by gradually checking and fixing the convenient benchmark design required by norms and sometimes by technology and building best-practices widely consolidated, even on a scientific basis. Early design optimization process relies on the combined use of appropriate IT tools for environmental control and on the interoperability of these systems with the traditional modelling tools for outdoor and indoor spaces. According to data-design-oriented logic, the core of the research methodology is applied to three case studies concerning public “complex” open spaces within the Neapolitan urban context (Italy)

    Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations.

    Get PDF
    To probe the fundamentals of membrane/protein interactions, all-atom multi-nanosecond molecular dynamics simulations were conducted on a single transmembrane poly(32)alanine helix in a fully solvated dimyristoyphosphatidylcholine (DMPC) bilayer. The central 12 residues, which interact only with the lipid hydrocarbon chains, maintained a very stable helical structure. Helical regions extended beyond these central 12 residues, but interactions with the lipid fatty-acyl ester linkages, the lipid headgroups, and water molecules made the helix less stable in this region. The C and N termini, exposed largely to water, existed as random coils. As a whole, the helix tilted substantially, from perpendicular to the bilayer plane (0 degree) to a 30 degrees tilt. The helix experienced a bend at its middle, and the two halves of the helix at times assumed substantially different tilts. Frequent hydrogen bonding, of up to 0.7 ns in duration, occurred between peptide and lipid molecules. This resulted in correlated translational diffusion between the helix and a few lipid molecules. Because of the large variation in lipid conformation, the lipid environment of the peptide was not well defined in terms of "annular" lipids and on average consisted of 18 lipid molecules. When compared with a "neat" bilayer without peptide, no significant difference was seen in the bilayer thickness, lipid conformations or diffusion, or headgroup orientation. However, the lipid hydrocarbon chain order parameters showed a significant decrease in order, especially in those methylene groups closest to the headgroup
    corecore