5,812 research outputs found

    Analytical computation of the off-axis Effective Area of grazing incidence X-ray mirrors

    Full text link
    Focusing mirrors for X-ray telescopes in grazing incidence, introduced in the 70s, are characterized in terms of their performance by their imaging quality and effective area, which in turn determines their sensitivity. Even though the on-axis effective area is assumed in general to characterize the collecting power of an X-ray optic, the telescope capability of imaging extended X-ray sources is also determined by the variation in its effective area with the off-axis angle. [...] The complex task of designing optics for future X-ray telescopes entails detailed computations of both imaging quality and effective area on- and off-axis. Because of their apparent complexity, both aspects have been, so far, treated by using ray-tracing routines aimed at simulating the interaction of X-ray photons with the reflecting surfaces of a given focusing system. Although this approach has been widely exploited and proven to be effective, it would also be attractive to regard the same problem from an analytical viewpoint, to assess an optical design of an X-ray optical module with a simpler calculation than a ray-tracing routine. [...] We have developed useful analytical formulae for the off-axis effective area of a double-reflection mirror in the double cone approximation, requiring only an integration and the standard routines to calculate the X-ray coating reflectivity for a given incidence angle. [...] Algebraic expressions are provided for the mirror geometric area, as a function of the off-axis angle. Finally, the results of the analytical computations presented here are validated by comparison with the corresponding predictions of a ray-tracing code.Comment: 12 pages, 11 figures, accepted for publication in "Astronomy & Astrophysics", section "Instruments, observational techniques, and data processing". Updated version after grammatical revision and typos correctio

    Photon and Pomeron -- induced production of Dijets in pppp, pApA and AAAA collisions

    Full text link
    In this paper we present a detailed comparison of the dijet production by photon -- photon, photon -- pomeron and pomeron -- pomeron interactions in pppp, pApA and AA{\rm AA} collisions at the LHC energy. The transverse momentum, pseudo -- rapidity and angular dependencies of the cross sections are calculated at LHC energy using the Forward Physics Monte Carlo (FPMC), which allows to obtain realistic predictions for the dijet production with two leading intact hadrons. We obtain that \gamma \pom channel is dominant at forward rapidities in pppp collisions and in the full kinematical range in the nuclear collisions of heavy nuclei. Our results indicate that the analysis of dijet production at the LHC can be useful to test the Resolved Pomeron model as well as to constrain the magnitude of the absorption effects.Comment: 11 pages, 6 figures, 1 table. Improved and enlarged version published in European Physical Journal

    Direct calorimetric measurements of isothermal entropy change on single crystal W-type hexaferrites at the spin reorientation transition

    Full text link
    We report on the magnetic field induced isothermal entropy change, \Delta s(Ha, T), of W-type ferrite with CoZn substitution. Entropy measurements are performed by direct calorimetry. Single crystals of the composition BaCo0.62_0.62Zn1.38_1.38Fe16_16O27_27, prepared by the flux method, are measured at different fixed temperatures under an applied field perpendicular and parallel to the c axis. At 296 K one deduces a value of K1_1 = 8.7 \times 10^{4} J m−3^-3 for the first anisotropy constant, which is in good agreement with the literature. The spin reorientation transition temperature is estimated to take place between 200 and 220 K

    Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method

    Get PDF
    The determination of the longitudinal spin Seebeck effect (LSSE) coefficient is currently plagued by a large uncertainty due to the poor reproducibility of the experimental conditions used in its measurement. In this work we present a detailed analysis of two different methods used for the determination of the LSSE coefficient. We have performed LSSE experiments in different laboratories, by using different setups and employing both the temperature difference method and the heat flux method. We found that the lack of reproducibility can be mainly attributed to the thermal contact resistance between the sample and the thermal baths which generate the temperature gradient. Due to the variation of the thermal resistance, we found that the scaling of the LSSE voltage to the heat flux through the sample rather than to the temperature difference across the sample greatly reduces the uncertainty. The characteristics of a single YIG/Pt LSSE device obtained with two different setups was (1.143±0.007)⋅10−7(1.143\pm0.007)\cdot 10^{-7} Vm/W and (1.101±0.015)⋅10−7(1.101\pm0.015)\cdot 10^{-7} Vm/W with the heat flux method and (2.313±0.017)⋅10−7(2.313\pm0.017)\cdot 10^{-7} V/K and (4.956±0.005)⋅10−7(4.956\pm0.005)\cdot 10^{-7} V/K with the temperature difference method. This shows that systematic errors can be considerably reduced with the heat flux method.Comment: PDFLaTeX, 10 pages, 6 figure

    Is demagnetization an efficient optimization method?

    Full text link
    Demagnetization, commonly employed to study ferromagnets, has been proposed as the basis for an optimization tool, a method to find the ground state of a disordered system. Here we present a detailed comparison between the ground state and the demagnetized state in the random field Ising model, combing exact results in d=1d=1 and numerical solutions in d=3d=3. We show that there are important differences between the two states that persist in the thermodynamic limit and thus conclude that AC demagnetization is not an efficient optimization method.Comment: 2 pages, 1 figur

    Noise Measurement of Interacting Ferromagnetic Particles with High Resolution Hall Microprobes

    Get PDF
    We present our first experimental determination of the magnetic noise of a superspinglass made of < 1 pico-liter frozen ferrofluid. The measurements were performed with a local magnetic field sensor based on Hall microprobes operated with the spinning current technique. The results obtained, though preliminary, qualitatively agree with the theoretical predictions of Fluctuation-Dissipation theorem (FDT) violation [1].Comment: 4pages, 2 figure
    • …
    corecore